Gómez-Bra A, Gude L, Arias-Pérez MS. Synthesis, structural study and antitumor activity of novel alditol-based imidazophenanthrolines (aldo-IPs).
Bioorg Med Chem 2024;
99:117563. [PMID:
38215623 DOI:
10.1016/j.bmc.2023.117563]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.
Collapse