Han C, Han G, Yao S, Yuan L, Liu X, Cao Z, Mannodi‐Kanakkithodi A, Sun Y. Defective Ultrathin ZnIn
2 S
4 for Photoreductive Deuteration of Carbonyls Using D
2 O as the Deuterium Source.
ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022;
9:e2103408. [PMID:
34796666 PMCID:
PMC8787392 DOI:
10.1002/advs.202103408]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 05/17/2023]
Abstract
Deuterium (D) labeling is of great value in organic synthesis, pharmaceutical industry, and materials science. However, the state-of-the-art deuteration methods generally require noble metal catalysts, expensive deuterium sources, or harsh reaction conditions. Herein, noble metal-free and ultrathin ZnIn2 S4 (ZIS) is reported as an effective photocatalyst for visible light-driven reductive deuteration of carbonyls to produce deuterated alcohols using heavy water (D2 O) as the sole deuterium source. Defective two-dimensional ZIS nanosheets (D-ZIS) are prepared in a surfactant assisted bottom-up route exhibited much enhanced performance than the pristine ZIS counterpart. A systematic study is carried out to elucidate the contributing factors and it is found that the in situ surfactant modification enabled D-ZIS to expose more defect sites for charge carrier separation and active D-species generation, as well as high specific surface area, all of which are beneficial for the desirable deuteration reaction. This work highlights the great potential in developing low-cost semiconductor-based photocatalysts for organic deuteration in D2 O, circumventing expensive deuterium reagents and harsh conditions.
Collapse