1
|
Flato UAP, Pereira BCDA, Costa FA, Vilela MC, Frigieri G, Cavalcante NJF, de Almeida SLS. Astrocytoma Mimicking Herpetic Meningoencephalitis: The Role of Non-Invasive Multimodal Monitoring in Neurointensivism. Neurol Int 2023; 15:1403-1410. [PMID: 38132969 PMCID: PMC10745918 DOI: 10.3390/neurolint15040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Neuromonitoring is a critical tool for emergency rooms and intensive care units to promptly identify and treat brain injuries. The case report of a patient with status epilepticus necessitating orotracheal intubation and intravenous lorazepam administration is presented. A pattern of epileptiform activity was detected in the left temporal region, and intravenous Acyclovir was administered based on the diagnostic hypothesis of herpetic meningoencephalitis. The neurointensivist opted for multimodal non-invasive bedside neuromonitoring due to the complexity of the patient's condition. A Brain4care (B4C) non-invasive intracranial compliance monitor was utilized alongside the assessment of an optic nerve sheath diameter (ONSD) and transcranial Doppler (TCD). Based on the collected data, a diagnosis of intracranial hypertension (ICH) was made and a treatment plan was developed. After the neurosurgery team's evaluation, a stereotaxic biopsy of the temporal lesion revealed a grade 2 diffuse astrocytoma, and an urgent total resection was performed. Research suggests that monitoring patients in a dedicated neurologic intensive care unit (Neuro ICU) can lead to improved outcomes and shorter hospital stays. In addition to being useful for patients with a primary brain injury, neuromonitoring may also be advantageous for those at risk of cerebral hemodynamic impairment. Lastly, it is essential to note that neuromonitoring technologies are non-invasive, less expensive, safe, and bedside-accessible approaches with significant diagnostic and monitoring potential for patients at risk of brain abnormalities. Multimodal neuromonitoring is a vital tool in critical care units for the identification and management of acute brain trauma as well as for patients at risk of cerebral hemodynamic impairment.
Collapse
Affiliation(s)
- Uri Adrian Prync Flato
- Hospital Samaritano Higienópolis—Américas Serviços Médicos, São Paulo 01232-010, Brazil; (B.C.d.A.P.); (F.A.C.); (M.C.V.); (N.J.F.C.); (S.L.S.d.A.)
- Hospital Israelita Albert Einstein, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05652-900, Brazil
| | - Barbara Cristina de Abreu Pereira
- Hospital Samaritano Higienópolis—Américas Serviços Médicos, São Paulo 01232-010, Brazil; (B.C.d.A.P.); (F.A.C.); (M.C.V.); (N.J.F.C.); (S.L.S.d.A.)
| | - Fernando Alvares Costa
- Hospital Samaritano Higienópolis—Américas Serviços Médicos, São Paulo 01232-010, Brazil; (B.C.d.A.P.); (F.A.C.); (M.C.V.); (N.J.F.C.); (S.L.S.d.A.)
| | - Marcos Cairo Vilela
- Hospital Samaritano Higienópolis—Américas Serviços Médicos, São Paulo 01232-010, Brazil; (B.C.d.A.P.); (F.A.C.); (M.C.V.); (N.J.F.C.); (S.L.S.d.A.)
| | - Gustavo Frigieri
- Medical Investigation Laboratory 62, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil;
| | - Nilton José Fernandes Cavalcante
- Hospital Samaritano Higienópolis—Américas Serviços Médicos, São Paulo 01232-010, Brazil; (B.C.d.A.P.); (F.A.C.); (M.C.V.); (N.J.F.C.); (S.L.S.d.A.)
| | - Samantha Longhi Simões de Almeida
- Hospital Samaritano Higienópolis—Américas Serviços Médicos, São Paulo 01232-010, Brazil; (B.C.d.A.P.); (F.A.C.); (M.C.V.); (N.J.F.C.); (S.L.S.d.A.)
| |
Collapse
|
2
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
3
|
Gomez A, Sekhon M, Griesdale D, Froese L, Yang E, Thelin EP, Raj R, Aries M, Gallagher C, Bernard F, Kramer AH, Zeiler FA. Cerebrovascular pressure reactivity and brain tissue oxygen monitoring provide complementary information regarding the lower and upper limits of cerebral blood flow control in traumatic brain injury: a CAnadian High Resolution-TBI (CAHR-TBI) cohort study. Intensive Care Med Exp 2022; 10:54. [PMID: 36550386 PMCID: PMC9780411 DOI: 10.1186/s40635-022-00482-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Brain tissue oxygen tension (PbtO2) and cerebrovascular pressure reactivity monitoring have emerged as potential modalities to individualize care in moderate and severe traumatic brain injury (TBI). The relationship between these modalities has had limited exploration. The aim of this study was to examine the relationship between PbtO2 and cerebral perfusion pressure (CPP) and how this relationship is modified by the state of cerebrovascular pressure reactivity. METHODS A retrospective multi-institution cohort study utilizing prospectively collected high-resolution physiologic data from the CAnadian High Resolution-TBI (CAHR-TBI) Research Collaborative database collected between 2011 and 2021 was performed. Included in the study were critically ill TBI patients with intracranial pressure (ICP), arterial blood pressure (ABP), and PbtO2 monitoring treated in any one of three CAHR-TBI affiliated adult intensive care units (ICU). The outcome of interest was how PbtO2 and CPP are related over a cohort of TBI patients and how this relationship is modified by the state of cerebrovascular reactivity, as determined using the pressure reactivity index (PRx). RESULTS A total of 77 patients met the study inclusion criteria with a total of 377,744 min of physiologic data available for the analysis. PbtO2 produced a triphasic curve when plotted against CPP like previous population-based plots of cerebral blood flow (CBF) versus CPP. The triphasic curve included a plateau region flanked by regions of relative ischemia (hypoxia) and hyperemia (hyperoxia). The plateau region shortened when cerebrovascular pressure reactivity was disrupted compared to when it was intact. CONCLUSIONS In this exploratory analysis of a multi-institution high-resolution physiology TBI database, PbtO2 seems to have a triphasic relationship with CPP, over the entire cohort. The CPP range over which the plateau exists is modified by the state of cerebrovascular reactivity. This indicates that in critically ill TBI patients admitted to ICU, PbtO2 may be reflective of CBF.
Collapse
Affiliation(s)
- Alwyn Gomez
- grid.21613.370000 0004 1936 9609Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada ,grid.21613.370000 0004 1936 9609Present Address: Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Mypinder Sekhon
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Present Address: Division of Critical Care, Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Donald Griesdale
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Logan Froese
- grid.21613.370000 0004 1936 9609Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB Canada
| | - Eleen Yang
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Eric P. Thelin
- grid.24381.3c0000 0000 9241 5705Department of Neurology, Karolinska University Hospital, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- grid.7737.40000 0004 0410 2071Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marcel Aries
- grid.412966.e0000 0004 0480 1382Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Clare Gallagher
- grid.22072.350000 0004 1936 7697Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Francis Bernard
- grid.14848.310000 0001 2292 3357Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC Canada
| | - Andreas H. Kramer
- grid.22072.350000 0004 1936 7697Department of Critical Care Medicine, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Frederick A. Zeiler
- grid.21613.370000 0004 1936 9609Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada ,grid.21613.370000 0004 1936 9609Present Address: Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB Canada ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.21613.370000 0004 1936 9609Centre On Aging, University of Manitoba, Winnipeg, Canada ,grid.5335.00000000121885934Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Cruz Navarro J, Ponce Mejia LL, Robertson C. A Precision Medicine Agenda in Traumatic Brain Injury. Front Pharmacol 2022; 13:713100. [PMID: 35370671 PMCID: PMC8966615 DOI: 10.3389/fphar.2022.713100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury remains a leading cause of death and disability across the globe. Substantial uncertainty in outcome prediction continues to be the rule notwithstanding the existing prediction models. Additionally, despite very promising preclinical data, randomized clinical trials (RCTs) of neuroprotective strategies in moderate and severe TBI have failed to demonstrate significant treatment effects. Better predictive models are needed, as the existing validated ones are more useful in prognosticating poor outcome and do not include biomarkers, genomics, proteonomics, metabolomics, etc. Invasive neuromonitoring long believed to be a "game changer" in the care of TBI patients have shown mixed results, and the level of evidence to support its widespread use remains insufficient. This is due in part to the extremely heterogenous nature of the disease regarding its etiology, pathology and severity. Currently, the diagnosis of traumatic brain injury (TBI) in the acute setting is centered on neurological examination and neuroimaging tools such as CT scanning and MRI, and its treatment has been largely confronted using a "one-size-fits-all" approach, that has left us with many unanswered questions. Precision medicine is an innovative approach for TBI treatment that considers individual variability in genes, environment, and lifestyle and has expanded across the medical fields. In this article, we briefly explore the field of precision medicine in TBI including biomarkers for therapeutic decision-making, multimodal neuromonitoring, and genomics.
Collapse
Affiliation(s)
- Jovany Cruz Navarro
- Departments of Anesthesiology and Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Lucido L. Ponce Mejia
- Departments of Neurosurgery and Neurology, LSU Health Science Center, New Orleans, LA, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Brasil S, Solla DJF, Nogueira RDC, Teixeira MJ, Malbouisson LMS, Paiva WDS. A Novel Noninvasive Technique for Intracranial Pressure Waveform Monitoring in Critical Care. J Pers Med 2021; 11:1302. [PMID: 34945774 PMCID: PMC8707681 DOI: 10.3390/jpm11121302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We validated a new noninvasive tool (B4C) to assess intracranial pressure waveform (ICPW) morphology in a set of neurocritical patients, correlating the data with ICPW obtained from invasive catheter monitoring. MATERIALS AND METHODS Patients undergoing invasive intracranial pressure (ICP) monitoring were consecutively evaluated using the B4C sensor. Ultrasound-guided manual internal jugular vein (IJV) compression was performed to elevate ICP from the baseline. ICP values, amplitudes, and time intervals (P2/P1 ratio and time-to-peak [TTP]) between the ICP and B4C waveform peaks were analyzed. RESULTS Among 41 patients, the main causes for ICP monitoring included traumatic brain injury, subarachnoid hemorrhage, and stroke. Bland-Altman's plot indicated agreement between the ICPW parameters obtained using both techniques. The strongest Pearson's correlation for P2/P1 and TTP was observed among patients with no cranial damage (r = 0.72 and 0.85, respectively) to the detriment of those who have undergone craniotomies or craniectomies. P2/P1 values of 1 were equivalent between the two techniques (area under the receiver operator curve [AUROC], 0.9) whereas B4C cut-off 1.2 was predictive of intracranial hypertension (AUROC 0.9, p < 000.1 for ICP > 20 mmHg). CONCLUSION B4C provided biometric amplitude ratios correlated with ICPW variation morphology and is useful for noninvasive critical care monitoring.
Collapse
Affiliation(s)
- Sérgio Brasil
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 01246, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.d.S.P.)
| | - Davi Jorge Fontoura Solla
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 01246, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.d.S.P.)
| | - Ricardo de Carvalho Nogueira
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 01246, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.d.S.P.)
| | - Manoel Jacobsen Teixeira
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 01246, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.d.S.P.)
| | | | - Wellingson da Silva Paiva
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 01246, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.d.S.P.)
| |
Collapse
|