1
|
Vettori M, Carpenè G, Salvagno GL, Gelati M, Dima F, Celegon G, Favaloro EJ, Lippi G. Effects of Recombinant SARS-CoV-2 Spike Protein Variants on Platelet Morphology and Activation. Semin Thromb Hemost 2024; 50:275-283. [PMID: 37327884 DOI: 10.1055/s-0043-1769939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Platelets are central elements of hemostasis and also play a pivotal role in the pathogenesis of thrombosis in coronavirus disease 2019. This study was planned to investigate the effects of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant spike protein variants on platelet morphology and activation. Citrated whole blood collected from ostensibly healthy subjects was challenged with saline (control sample) and with 2 and 20 ng/mL final concentration of SARS-CoV-2 recombinant spike protein of Ancestral, Alpha, Delta, and Omicron variants. Platelet count was found to be decreased with all SARS-CoV-2 recombinant spike protein variants and concentrations tested, achieving the lowest values with 20 ng/mL Delta recombinant spike protein. The mean platelet volume increased in all samples irrespective of SARS-CoV-2 recombinant spike protein variants and concentrations tested, but especially using Delta and Alpha recombinant spike proteins. The values of both platelet function analyzer-200 collagen-adenosine diphosphate and collagen-epinephrine increased in all samples irrespective of SARS-CoV-2 recombinant spike protein variants and concentrations tested, and thus reflecting platelet exhaustion, and displaying again higher increases with Delta and Alpha recombinant spike proteins. Most samples where SARS-CoV-2 recombinant spike proteins were added were flagged as containing platelet clumps. Morphological analysis revealed the presence of a considerable number of activated platelets, platelet clumps, platelet-monocyte, and platelet-neutrophils aggregates, especially in samples spiked with Alpha and Delta recombinant spike proteins at 20 ng/mL. These results provide support to the evidence that SARS-CoV-2 is capable of activating platelets through its spike protein, though such effect varies depending on different spike protein variants.
Collapse
Affiliation(s)
- Marco Vettori
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Giovanni Carpenè
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Gian Luca Salvagno
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Matteo Gelati
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Francesco Dima
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Giovanni Celegon
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Emmanuel J Favaloro
- Department of Haematology, Sydney Centers for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
- Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|