1
|
Liu Z, Li X, Chen M, Sun Y, Ma Y, Dong M, Cao L, Ma X. Heparin-binding protein and sepsis-induced coagulopathy: Modulation of coagulation and fibrinolysis via the TGF-β signalling pathway. Thromb Res 2024; 244:109176. [PMID: 39447256 DOI: 10.1016/j.thromres.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Heparin-binding protein (HBP) levels have been linked to organ failure and may represent an inflammatory biomarker of sepsis. We found disseminated intravascular coagulation (DIC) is associated with higher HBP levels in patients and in in vivo and in vitro models. This prospective, single-center observational study investigated the effects and underlying mechanisms of HBP on the coagulation cascade in sepsis. METHODS 538 patients with sepsis from June 2016 to December 2019 were enrolled. Mechanisms underlying HBP and the coagulation system were investigated in human umbilical vein endothelial cells (HUVEC) and C57 mice. RESULTS Increased HBP was associated with sepsis-induced DIC. The optimal cutoff value was 37.5 ng/mL (sensitivity: 56 %, specificity: 65 %). Antithrombin-III (AT-III) activity, plasmin-a2 plasmin inhibitor complex (PIC), procalcitonin (PCT), hemoglobin, and HBP ≥37.5 ng/mL were associated with of DIC occurrence. In HUVECs &C57 mice models, Western blotting, qPCR, and immunohistochemistry analysis showed that the binding between HBP and TGF-β receptor 2 (TGFBR2) caused elevation of plasminogen activator inhibitor-1 (PAI-1) levels. Furthermore, we found that mice stimulated with HBP had higher levels of fibrinogen and D-dimer in the blood. HBP treatment caused the accumulation of fibrinogen in mice lung tissue. Treatment with TGFBR2-small interfering RNAs inhibited the effects. CONCLUSION Patients with sepsis having HBP ≥37.5 ng/mL at admission were more likely to develop DIC. HBP upregulates the expression of fibrinogen and PAI-1 via TGFBR2 and the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Zixuan Liu
- Department of Critical Care Medicine, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China; Department of Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Nanjing Road 288, Tianjin 300020, China
| | - Xu Li
- Department of Critical Care Medicine, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Mingming Chen
- Department of Critical Care Medicine, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yini Sun
- Department of Critical Care Medicine, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Liu Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China.
| | - Xiaochun Ma
- Department of Critical Care Medicine, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Paulsson M, Cardenas EI, Che KF, Brundin B, Smith M, Qvarfordt I, Lindén A. TLR4-mediated release of heparin-binding protein in human airways: a co-stimulatory role for IL-26. Front Immunol 2023; 14:1178135. [PMID: 37234157 PMCID: PMC10206387 DOI: 10.3389/fimmu.2023.1178135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Bacterial infection causes accumulation of neutrophils that release antimicrobial proteins including heparin-binding protein (HBP). In human airways, this neutrophil accumulation can be re-capitulated via intrabronchial exposure to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, that also causes a local increase in the neutrophil-mobilizing cytokine IL-26. Although LPS is considered a weak stimulus for HBP release ex vivo, its effect on HBP release in human airways in vivo has not been characterized. Methods We determined whether intrabronchial exposure to LPS causes concomitant release of HBP and IL-26 in human airways, and whether IL-26 can enhance LPS-induced release of HBP in isolated human neutrophils. Results We found that the concentration of HBP was markedly increased in bronchoalveolar lavage (BAL) fluid 12, 24, and 48 hours after LPS exposure, and that it displayed a strong and positive correlation with that of IL-26. Moreover, the concentration of HBP in conditioned media from isolated neutrophils was enhanced only after co-stimulation with LPS and IL-26. Conclusions Taken together, our findings indicate that TLR4 stimulation causes concomitant release of HBP and IL-26 in human airways, and that IL-26 may constitute a required co-stimulant for HBP release in neutrophils, thus enabling the concerted action of HBP and IL-26 in local host defense.
Collapse
Affiliation(s)
- Magnus Paulsson
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Microbiology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Eduardo I. Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karlhans F. Che
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Brundin
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Margaretha Smith
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
3
|
Zhang Y, Sun W, Zhang L. Heparin-Binding Protein Aggravates Acute Lung Injury in Septic Rats by Promoting Macrophage M1 Polarization and NF- κB Signaling Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3315601. [PMID: 36225185 PMCID: PMC9550450 DOI: 10.1155/2022/3315601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Objective Heparin-binding protein (HBP) plays an important role in sepsis and is a prognostic biomarker in patients with sepsis, but the role of HBP in the pathogenesis of sepsis-associated acute lung injury (ALI) remains unclear. This study aimed to investigate the role of HBP in sepsis-induced ALI and its underlying molecular mechanisms. Methods The cecal ligation and puncture (CLP) model was used to induce ALI in mice and randomly divided into 4 groups: control group, CLP (rats treated with cecal ligation and puncture), HBP (rats treated with CLP and HBP injection), and HBP + UFH (rats treated with CLP and injection of HBP and unfractionated heparin). Subsequently, HBP expression in rat serum and lung tissues was detected by qRT-PCR, edema and pathological changes in lung tissue by lung wet-to-dry weight ratio (W/D) and HE staining, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities in lung tissues by detection kits. Additionally, ELISA and western blot were applied for the determination of IL-6, TNF-α, and IL-1β expression in rat bronchoalveolar lavage fluid, and iNOS, Arg-1, Mrc1, NF-κBp65, IKKα, IκBα, and p-IκBα expression in lung tissues. Results The expression levels of HBP in serum and lung tissues of rats in the HBP group were significantly increased, the lung tissues were severely injured, accompanied by a significant increase in MPO activity but a significant decrease in SOD activity, and the levels of IL-6, TNF-α, and IL-1β in bronchoalveolar lavage fluid were significantly increased. In addition, the expression levels of iNOS, NF-κB p65, IKKα, and p-IκBα in the lung tissues of rats in the HBP group were significantly increased, while the addition of unfractionated heparin reversed the above results. Conclusion HBP aggravates ALI in septic rats, and its mechanism may be related to the promotion of macrophage M1 polarization and activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Diagnostic Ultrasound, Southern War Zone General Hospital, Guangzhou, Guangdong, China
| | - Wenqiao Sun
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Licheng Zhang
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Voigtlaender M, Beckmann L, Schulenkorf A, Sievers B, Rolling C, Bokemeyer C, Langer F. Effect of myeloperoxidase on the anticoagulant activity of low molecular weight heparin and rivaroxaban in an in vitro tumor model. J Thromb Haemost 2020; 18:3267-3279. [PMID: 32865287 DOI: 10.1111/jth.15075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inflammation with leukocyte activation is a hallmark of cancer-associated thrombosis (CAT), and elevated leukocytes predict venous thromboembolism in cancer outpatients. In a recent trial, rivaroxaban was more efficacious than dalteparin in preventing CAT recurrence. OBJECTIVES In a proof-of-concept study, we aimed to provide a mechanistic basis for improved efficacy of rivaroxaban compared to low molecular weight heparin in CAT treatment. METHODS We studied the effects of rivaroxaban, dalteparin, and tinzaparin at peak and trough levels on tumor cell-induced procoagulant activity and platelet aggregation in the presence or absence of the cationic leukocyte-derived enzyme, myeloperoxidase (MPO). Furthermore, pro-inflammatory conditions were generated by stimulating whole blood with lipopolysaccharide (LPS) or phorbol-myristate-acetate (PMA), before measuring thrombin generation in plasma supernatants. RESULTS All three anticoagulants inhibited thrombin generation, fibrin clot formation, and platelet aggregation induced by the tissue factor-expressing prostate carcinoma cell line, 22Rv1. Pre-incubation with MPO partially attenuated the anticoagulant activity of dalteparin and tinzaparin, but not rivaroxaban, at trough levels. The effect of MPO did not involve the enzyme's catalytic properties, but required its structural integrity, as indicated by heat denaturation. In plasma obtained from LPS- or PMA-stimulated whole blood, elevated MPO antigen levels inversely correlated with the ability of tinzaparin to inhibit 22Rv1-induced thrombin generation. CONCLUSIONS Myeloperoxidase release may partially attenuate the anticoagulant activity of trough levels of dalteparin and tinzaparin in the context of paraneoplastic leukocyte activation. However, this effect is likely not sufficient to explain the improved efficacy of rivaroxaban, and possibly other oral factor Xa inhibitors, in CAT treatment.
Collapse
Affiliation(s)
- Minna Voigtlaender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Beckmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Schulenkorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca Sievers
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Rolling
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Langer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
A Promising Candidate: Heparin-Binding Protein Steps onto the Stage of Sepsis Prediction. J Immunol Res 2019; 2019:7515346. [PMID: 31930151 PMCID: PMC6942865 DOI: 10.1155/2019/7515346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/06/2019] [Indexed: 12/30/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection. With high morbidity and mortality of this disease, there is a need to find early effective diagnosis and assessment methods to improve the prognosis of patients. Heparin-binding protein (HBP) is a granular protein derived from polynuclear neutrophils. The biosynthetic HBP in neutrophils is rapidly released under the stimulation of bacteria, resulting in increased vascular permeability and edema. It is reasonable to speculate that the HBP in plasma may serve as a novel diagnostic marker for sepsis, bacterial skin infection, acute bacterial meningitis, leptospirosis, protozoan parasites, and even some noncommunicable diseases. It implies that in the detection and diagnosis of sepsis, it will be possible to make relevant diagnosis through this new indicator in the future. In this review, we summarize the typical biological function of HBP and its latest research progress to provide theoretical basis for clinical prediction and diagnosis of sepsis.
Collapse
|
6
|
Kershaw J, Kim KH. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. J Med Food 2017; 20:427-438. [PMID: 28387565 DOI: 10.1089/jmf.2017.3916] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabolic disease comprises a set of risk factors highly associated with obesity and insulin resistance and is a consequence of central adiposity, hyperglycemia, and dyslipidemia. Furthermore, obesity increases the risk of the development of metabolic disease due to ectopic fat deposition, low-grade inflammation, and systemic energy disorders caused by dysregulated adipose tissue function. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and has been reported to exhibit anticancer and anti-inflammatory properties. In addition, recently reported beneficial effects of piceatannol on hypercholesterolemia, atherosclerosis, and angiogenesis underscore its therapeutic potential in cardiovascular disease. However, investigation of its role in metabolic disease is still in its infancy. This review intensively summarizes in vitro and in vivo studies supporting the potential therapeutic effects of piceatannol in metabolic disease, including inhibition of adipogenesis and lipid metabolism in adipocytes, and regulation of hyperlipidemia, hyperglycemia, insulin resistance, and fatty acid-induced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jonathan Kershaw
- 1 Department of Food Science, Purdue University , West Lafayette, Indiana, USA
| | - Kee-Hong Kim
- 1 Department of Food Science, Purdue University , West Lafayette, Indiana, USA .,2 Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana, USA
| |
Collapse
|