1
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
2
|
Younis AZ, Lavery GG, Christian M, Doig CL. Rapid isolation of respiring skeletal muscle mitochondria using nitrogen cavitation. Front Physiol 2023; 14:1114595. [PMID: 36960150 PMCID: PMC10027933 DOI: 10.3389/fphys.2023.1114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Methods of isolating mitochondria commonly utilise mechanical force and shear stress to homogenize tissue followed by purification by multiple rounds of ultracentrifugation. Existing protocols can be time-consuming with some physically impairing integrity of the sensitive mitochondrial double membrane. Here, we describe a method for the recovery of intact, respiring mitochondria from murine skeletal muscle tissue and cell lines using nitrogen cavitation. This protocol results in high-yield, pure and respiring mitochondria without the need for purification gradients or ultracentrifugation. The protocol takes under an hour and requires limited specialised equipment. Our methodology is successful in extracting mitochondria of both cell extracts and skeletal muscle tissue. This represents an improved yield in comparison to many of the existing methods. Western blotting and electron microscopy demonstrate the enrichment of mitochondria with their ultrastructure well-preserved and an absence of contamination from cytoplasmic or nuclear fractions. Using respirometry analysis we show that mitochondria extracted from murine skeletal muscle cell lines (C2C12) and tibialis anterior tissue have an appropriate respiratory control ratio. These measures are indicative of healthy coupled mitochondria. Our method successfully demonstrates the rapid isolation of functional mitochondria and will benefit researchers studying mitochondrial bioenergetics as well as providing greater throughput and application for time-sensitive assays.
Collapse
|
3
|
Polyakova VO, Kvetnoy IM, Anderson G, Rosati J, Mazzoccoli G, Linkova NS. Reciprocal Interactions of Mitochondria and the Neuroimmunoendocrine System in Neurodegenerative Disorders: An Important Role for Melatonin Regulation. Front Physiol 2018; 9:199. [PMID: 29593561 PMCID: PMC5857592 DOI: 10.3389/fphys.2018.00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Structural and functional alterations of mitochondria are intimately linked to a wide array of medical conditions. Many factors are involved in the regulation of mitochondrial function, including cytokines, chaperones, chemokines, neurosteroids, and ubiquitins. The role of diffusely located cells of the neuroendocrine system, including biogenic amines and peptide hormones, in the management of mitochondrial function, as well as the role of altered mitochondrial function in the regulation of these cells and system, is an area of intense investigation. The current article looks at the interactions among the cells of the neuronal-glia, immune and endocrine systems, namely the diffuse neuroimmunoendocrine system (DNIES), and how DNIES interacts with mitochondrial function. Whilst changes in DNIES can impact on mitochondrial function, local, and systemic alterations in mitochondrial function can alter the component systems of DNIES and their interactions. This has etiological, course, and treatment implications for a wide range of medical conditions, including neurodegenerative disorders. Available data on the role of melatonin in these interactions, at cellular and system levels, are reviewed, with directions for future research indicated.
Collapse
Affiliation(s)
- Victoria O Polyakova
- Department of Gynecology and Reproductology, Ott Institute of Obstetrics, Saint Petersburg, Russia.,Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Department of Physiology and Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Igor M Kvetnoy
- Department of Gynecology and Reproductology, Ott Institute of Obstetrics, Saint Petersburg, Russia.,Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Department of Physiology and Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia
| | - George Anderson
- CRC Scotland and London Clinical Research, London, United Kingdom
| | - Jessica Rosati
- Cell Reprogramming Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Natalya S Linkova
- Department of Cell Biology and Pathology, Saint-Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
4
|
Djafarzadeh S, Jakob SM. Isolation of Intact Mitochondria from Skeletal Muscle by Differential Centrifugation for High-resolution Respirometry Measurements. J Vis Exp 2017. [PMID: 28362420 DOI: 10.3791/55251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are involved in cellular energy metabolism and use oxygen to produce energy in the form of adenosine triphosphate (ATP). Differential centrifugation at low- and high-speed is commonly used to isolate mitochondria from tissues and cultured cells. Crude mitochondrial fractions obtained by differential centrifugation are used for respirometry measurements. The differential centrifugation technique is based on the separation of organelles according to their size and sedimentation velocity. The isolation of mitochondria is performed immediately after tissue harvesting. The tissue is immersed in an ice-cold homogenization medium, minced using scissors and homogenized in a glass homogenizer with a loose-fitting pestle. The differential centrifugation technique is efficient, fast and inexpensive and the mitochondria obtained by differential centrifugation are pure enough for respirometry assays. Some of the limitations and disadvantages of isolated mitochondria, based on differential centrifugation, are that the mitochondria can be damaged during the homogenization and isolation procedure and that large amounts of the tissue biopsy or cultured cells are required for the mitochondrial isolation.
Collapse
Affiliation(s)
- Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital;
| | | |
Collapse
|
5
|
Bleilevens C, Grottke O, Groening S, Honickel M, Kopp R, Singh S, Arens J, Rossaint R. Septic porcine blood does not further activate coagulation during in vitro membrane oxygenation. Eur J Cardiothorac Surg 2017; 51:449-456. [PMID: 27806995 DOI: 10.1093/ejcts/ezw345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022] Open
Abstract
Objectives For patients with a severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) represents a life-saving measure. Frequently, patients with severe ARDS also show signs of severe sepsis. As blood contact with the membrane oxygenator surface leads to adverse effects due to insufficient biocompatibility partly caused by activation of platelets, coagulation factors and leucocytes, we hypothesized that these adverse effects would be amplified if septic blood in a preactivated state came into contact with the membrane oxygenator. Methods In a previously established in vitro 12-h ECMO test system (mock loop), we used septic or healthy domestic pig blood to analyse coagulation and inflammatory parameters. Sepsis was induced by a caecal ligation and puncture model in pigs. Results At the beginning of the mock loop experiments, the septic blood showed significantly increased thrombin-antithrombin complexes (76.9 vs 27.7 µg/l), D-dimers (1.2 vs 0.3 mg/l) and fibrinogen concentration (1.8 vs 1.5 g/l), as well as elevated extrinsic coagulation activity (shorter EXTEM-CT: 44.2 vs 57 s) and higher lactate (3.4 vs 1.5 mmol/l) and cytokine levels (interleukin-6: 827 vs 31 pg/ml) when compared with the blood from healthy animals. Despite the preactivated status of the septic blood, no further increase of coagulation activity, inflammatory response or increased oxygenator resistance was observed in comparison to the control experiments. Conclusion Septic porcine blood was not further activated due to the contact with an oxygenator, and no increased clot formation or biocompatibility problems were observed.
Collapse
Affiliation(s)
- Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oliver Grottke
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Sabine Groening
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Markus Honickel
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| | - Rüdger Kopp
- Department of Intensive Care, University Hospital RWTH Aachen University, Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Mitochondrial and endoplasmic reticulum dysfunction and related defense mechanisms in critical illness-induced multiple organ failure. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2534-2545. [PMID: 28219766 DOI: 10.1016/j.bbadis.2017.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Patients with critical illness-induced multiple organ failure suffer from a very high morbidity and mortality, despite major progress in intensive care. The pathogenesis of this condition is complex and incompletely understood. Inadequate tissue perfusion and an overwhelming inflammatory response with pronounced cellular damage have been suggested to play an important role, but interventions targeting these disturbances largely failed to improve patient outcome. Hence, new therapeutic perspectives are urgently needed. Cellular dysfunction, hallmarked by mitochondrial dysfunction and endoplasmic reticulum stress, is increasingly recognized as an important contributor to the development of organ failure in critical illness. Several cellular defense mechanisms are normally activated when the cell is in distress, but may fail or respond insufficiently to critical illness. This insight may open new therapeutic options by stimulating these cellular defense mechanisms. This review summarizes the current understanding of the role of mitochondrial dysfunction and endoplasmic reticulum stress in critical illness-induced multiple organ failure and gives an overview of the corresponding cellular defense mechanisms. Therapeutic perspectives based on these cellular defense mechanisms are discussed. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
|
7
|
Mink S, Roy Chowdhury SK, Gotes J, Cheng ZQ, Kasian K, Fernyhough P. Gentisic acid sodium salt, a phenolic compound, is superior to norepinephrine in reversing cardiovascular collapse, hepatic mitochondrial dysfunction and lactic acidemia in Pseudomonas aeruginosa septic shock in dogs. Intensive Care Med Exp 2016; 4:24. [PMID: 27456956 PMCID: PMC4960072 DOI: 10.1186/s40635-016-0095-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The development of lactic acidemia (LA) in septic shock (SS) is associated with an ominous prognosis. We previously showed that the mechanism of LA in SS may relate to impaired hepatic uptake of lactate, but the mechanism was not clear. Uptake of lactate by the liver occurs by a membrane-associated, pH-dependent, antiport system known as the monocarboxylate transporter. In the hepatocyte, lactate can then be metabolized by oxidative phosphorylation or converted to glucose in the cytosol. In the present study, we examined (1) whether hepatic mitochondrial dysfunction accounted for decreased uptake of lactate in a canine model of Pseudomonas aeruginosa SS, (2) whether norepinephrine (NE) treatment by increasing mean arterial pressure (MAP) could improve mitochondrial dysfunction and LA in this model, and (3) whether gentisic acid sodium salt (GSS), a novel phenolic compound, was superior to NE in these effects. METHODS In anesthetized/ventilated dogs, we infused the bacteria over ~10 h and measured hemodynamics in various treatment groups (see below). We then euthanized the animal and isolated the hepatic mitochondria. We measured hepatic mitochondrial oxygen consumption rates using the novel Seahorse XF24 analyzer under conditions that included: basal respiration, after the addition of adenosine- diphosphate to produce coupled respiration, and after the addition of a protonophore to produce maximal respiration. RESULTS We found that in the septic control group, mean arterial pressure decreased over the course of the study, and that mitochondrial dysfunction developed in which there was a reduction in maximal respiration. Whereas both NE and GSS treatments reversed the reduction in mean arterial pressure and increased maximal respiration to similar extents in respective groups, only in the GSS group was there a reduction in LA. CONCLUSIONS Hepatic mitochondrial dysfunction occurs in SS, but does not appear to be required for the development of LA in SS, since NE improved mitochondrial dysfunction without reversing LA. GSS, a phenolic compound restored mean arterial pressure, mitochondrial dysfunction, and LA in SS. This reduction in LA may be independent of its effect on improving hepatic mitochondrial function.
Collapse
Affiliation(s)
- Steven Mink
- Departments of Medicine and Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada. .,Health Sciences Centre, GF-221, 820 Sherbrook St, Winnipeg, MB, R3A-1R9, Canada.
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders at the St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jose Gotes
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico.,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhao-Qin Cheng
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Krika Kasian
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders at the St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Dose response of endotoxin on hepatocyte and muscle mitochondrial respiration in vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:353074. [PMID: 25649304 PMCID: PMC4306363 DOI: 10.1155/2015/353074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 01/02/2023]
Abstract
Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.
Collapse
|
9
|
Ackermann KA, Bostock H, Brander L, Schröder R, Djafarzadeh S, Tuchscherer D, Jakob SM, Takala J, Z'Graggen WJ. Early changes of muscle membrane properties in porcine faecal peritonitis. Crit Care 2014; 18:484. [PMID: 25145497 PMCID: PMC4159512 DOI: 10.1186/s13054-014-0484-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/29/2014] [Indexed: 12/02/2022] Open
Abstract
Introduction Sepsis-induced myopathy and critical illness myopathy (CIM) are possible causes of muscle weakness in intensive care patients. They have been attributed to muscle membrane dysfunction. The aim of this study was to investigate membrane properties in the early stage of experimental sepsis by evaluating muscle excitability. Methods In total, 20 anaesthetized and mechanically ventilated pigs were randomized to either faecal peritonitis (n = 10) or to non-septic controls (n = 10). Resuscitation with fluids and vasoactive drugs was started 3 hours after peritonitis induction. Muscle membrane properties were investigated by measuring muscle velocity recovery cycles before induction of peritonitis as well as 6, 18 and 27 hours thereafter. Muscle relative refractory period (MRRP) and early supernormality (ESN) were assessed. Results Peritonitis lasting 27 hours was associated with an increase of MRRP by 28% from 2.38 ± 0.18 ms (mean ± SD) to 3.47 ± 1.79 ms (P <0.01) and a decrease of ESN by 31% from 9.64 ± 2.82% to 6.50 ± 2.64% (P <0.01). ESN reduction was already apparent 6 hours after induction of peritonitis. Values in controls did not show any significant alterations. Conclusions Muscle membrane abnormalities consistent with membrane depolarization and/or sodium channel inactivation occurred within 6 hours of peritonitis induction. This indicates that changes that have been described in established sepsis-induced myopathy and/or CIM start early in the course of sepsis. Muscle excitability testing facilitates evaluation of the time course of these changes. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0484-2) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Corrêa TD, Jeger V, Pereira AJ, Takala J, Djafarzadeh S, Jakob SM. Angiotensin II in Septic Shock. Crit Care Med 2014; 42:e550-9. [DOI: 10.1097/ccm.0000000000000397] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Jeger V, Djafarzadeh S, Jakob SM, Takala J. Mitochondrial function in sepsis. Eur J Clin Invest 2013; 43:532-42. [PMID: 23496374 DOI: 10.1111/eci.12069] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/11/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND The relevance of mitochondrial dysfunction as to pathogenesis of multiple organ dysfunction and failure in sepsis is controversial. This focused review evaluates the evidence for impaired mitochondrial function in sepsis. DESIGN Review of original studies in experimental sepsis animal models and clinical studies on mitochondrial function in sepsis. In vitro studies solely on cells and tissues were excluded. PubMed was searched for articles published between 1964 and July 2012. RESULTS Data from animal experiments (rodents and pigs) and from clinical studies of septic critically ill patients and human volunteers were included. A clear pattern of sepsis-related changes in mitochondrial function is missing in all species. The wide range of sepsis models, length of experiments, presence or absence of fluid resuscitation and methods to measure mitochondrial function may contribute to the contradictory findings. A consistent finding was the high variability of mitochondrial function also in control conditions and between organs. CONCLUSION Mitochondrial function in sepsis is highly variable, organ specific and changes over the course of sepsis. Patients who will die from sepsis may be more affected than survivors. Nevertheless, the current data from mostly young and otherwise healthy animals does not support the view that mitochondrial dysfunction is the general denominator for multiple organ failure in severe sepsis and septic shock. Whether this is true if underlying comorbidities are present, especially in older patients, should be addressed in further studies.
Collapse
Affiliation(s)
- Victor Jeger
- Department of Intensive Care Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
12
|
Increasing mean arterial blood pressure in sepsis: effects on fluid balance, vasopressor load and renal function. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R21. [PMID: 23363690 PMCID: PMC4056362 DOI: 10.1186/cc12495] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
Introduction The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. Methods Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). Results MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). Conclusions The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.
Collapse
|
13
|
Protti A, Fortunato F, Monti M, Vecchio S, Gatti S, Comi GP, De Giuseppe R, Gattinoni L. Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Crit Care 2012; 16:R75. [PMID: 22568883 PMCID: PMC3580617 DOI: 10.1186/cc11332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/19/2012] [Accepted: 05/08/2012] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Hepatic mitochondrial dysfunction may play a critical role in the pathogenesis of metformin-induced lactic acidosis. However, patients with severe metformin intoxication may have a 30 to 60% decrease in their global oxygen consumption, as for generalized inhibition of mitochondrial respiration. We developed a pig model of severe metformin intoxication to validate this clinical finding and assess mitochondrial function in liver and other tissues. METHODS Twenty healthy pigs were sedated and mechanically ventilated. Ten were infused with a large dose of metformin (4 to 8 g) and five were not (sham controls). Five others were infused with lactic acid to clarify whether lactic acidosis per se diminishes global oxygen use. Arterial pH, lactatemia, global oxygen consumption (VO2) (metabolic module) and delivery (DO2) (cardiac output by thermodilution) were monitored for nine hours. Oxygen extraction was computed as VO2/DO2. Activities of the main components of the mitochondrial respiratory chain (complex I, II and III, and IV) were measured with spectrophotometry (and expressed relative to citrate synthase activity) in heart, kidney, liver, skeletal muscle and platelets taken at the end of the study. RESULTS Pigs infused with metformin (6 ± 2 g; final serum drug level 77 ± 45 mg/L) progressively developed lactic acidosis (final arterial pH 6.93 ± 0.24 and lactate 18 ± 7 mmol/L, P < 0.001 for both). Their VO2 declined over time (from 115 ± 34 to 71 ± 30 ml/min, P < 0.001) despite grossly preserved DO2 (from 269 ± 68 to 239 ± 51 ml/min, P = 0.58). Oxygen extraction accordingly fell from 43 ± 10 to 30 ± 10% (P = 0.008). None of these changes occurred in either sham controls or pigs infused with lactic acid (final arterial pH 6.86 ± 0.16 and lactate 22 ± 3 mmol/L). Metformin intoxication was associated with inhibition of complex I in the liver (P < 0.001), heart (P < 0.001), kidney (P = 0.003), skeletal muscle (P = 0.012) and platelets (P = 0.053). The activity of complex II and III diminished in the liver (P < 0.001), heart (P < 0.001) and kidney (P < 0.005) while that of complex IV declined in the heart (P < 0.001). CONCLUSIONS Metformin intoxication induces lactic acidosis, inhibits global oxygen consumption and causes mitochondrial dysfunction in liver and other tissues. Lactic acidosis per se does not decrease whole-body respiration.
Collapse
Affiliation(s)
- Alessandro Protti
- Dipartimento di Anestesia, Rianimazione (Intensiva e Sub-Intensiva) e Terapia del Dolore, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
| | - Francesco Fortunato
- Centro Dino Ferrari - Dipartimento di Scienze Neurologiche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
| | - Massimo Monti
- Dipartimento di Anestesia, Rianimazione (Intensiva e Sub-Intensiva) e Terapia del Dolore, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
| | - Sarah Vecchio
- Centro Nazionale di Informazione Tossicologica - Centro Antiveleni, Fondazione IRCCS Salvatore Maugeri, Via Salvatore Maugeri 10, Pavia 27100, Italy
| | - Stefano Gatti
- Centro di Ricerche Chirurgiche Precliniche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
| | - Giacomo P Comi
- Centro Dino Ferrari - Dipartimento di Scienze Neurologiche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
| | - Rachele De Giuseppe
- Fondazione Fratelli Confalonieri, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milano 20122, Italy
| | - Luciano Gattinoni
- Dipartimento di Anestesia, Rianimazione (Intensiva e Sub-Intensiva) e Terapia del Dolore, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy
| |
Collapse
|