1
|
Kesserwan S, Sadagurski M, Mao L, Klueh U. Mast Cell Deficiency in Mice Attenuates Insulin Phenolic Preservative-Induced Inflammation. Biomedicines 2023; 11:2258. [PMID: 37626754 PMCID: PMC10452641 DOI: 10.3390/biomedicines11082258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
One major obstacle that limits the lifespan of insulin infusion pumps is surmounting the tissue site reaction at the device implantation site. All commercial insulin formulations contain insulin phenolic preservatives (IPPs) designed to ensure insulin protein stability and prolong shelf-life. However, our laboratory demonstrated that these preservatives are cytotoxic and induce inflammation. Mature mast cells (MCs) reside in cutaneous tissue and are one of the first responders to an epidermal breach. Upon activation, MCs release proinflammatory and immunomodulatory prepacked mediators that exacerbate these inflammatory reactions. Thus, we hypothesized that once the epidermis is breached, cutaneous MCs are triggered inciting the inflammatory response to IPP-induced inflammation. This hypothesis was pursued utilizing our modified in vivo mouse air pouch model, including a c-kit dependent (C57BL/6J-kitW-sh/W-sh) and a c-kit independent (Cpa3-Cre; Mcl-1fl/fl) MC-deficient mouse model. Leukocytes were quantified in the mouse air pouch lavage fluid following flow cytometry analysis for IPP infusion under three different states, insulin-containing phenolic preservatives (Humalog®), insulin preservatives alone, and normal saline as a control. The air pouch wall was assessed using histopathological evaluations. Flow cytometry analysis demonstrated a statistically significant difference in inflammatory cell recruitment for both MC-deficient mouse models when compared to the control strain including infused control saline. Significantly less inflammation was observed at the site of infusion for the MC-deficient strains compared to the control strain. Overall, concordant results were obtained in both mouse types, C57Bl6-kitW-sh/W-sh and Cpa3-Cre; Mcl-1fl/fl. These findings in multiple model systems support the conclusion that MCs have important or possible unique roles in IPP-induced inflammation.
Collapse
Affiliation(s)
| | | | | | - Ulrike Klueh
- Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI 48202, USA; (S.K.); (M.S.)
| |
Collapse
|
2
|
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol 2019; 9:241. [PMID: 31334134 PMCID: PMC6616152 DOI: 10.3389/fcimb.2019.00241] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Primary interaction of an intracellular bacterium with its host cell is initiated by activation of multiple signaling pathways in response to bacterium recognition itself or as cellular responses to stress induced by the bacterium. The leading molecules in these processes are cell surface membrane receptors as well as cytosolic pattern recognition receptors recognizing pathogen-associated molecular patterns or damage-associated molecular patterns induced by the invading bacterium. In this review, we demonstrate possible sequences of events leading to recognition of Francisella tularensis, present findings on known mechanisms for manipulating cell responses to protect Francisella from being killed, and discuss newly published data from the perspective of early stages of host-pathogen interaction.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
3
|
Liu Y, Wang K, Liang X, Li Y, Zhang Y, Zhang C, Wei H, Luo R, Ge S, Xu G. Complement C3 Produced by Macrophages Promotes Renal Fibrosis via IL-17A Secretion. Front Immunol 2018; 9:2385. [PMID: 30405606 PMCID: PMC6204358 DOI: 10.3389/fimmu.2018.02385] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Complement synthesis in cells of origin is strongly linked to the pathogenesis and progression of renal disease. Multiple studies have examined local C3 synthesis in renal disease and elucidated the contribution of local cellular sources, but the contribution of infiltrating inflammatory cells remains unclear. We investigate the relationships among C3, macrophages and Th17 cells, which are involved in interstitial fibrosis. Here, we report that increased local C3 expression, mainly by monocyte/macrophages, was detected in renal biopsy specimens and was correlated with the severity of renal fibrosis (RF) and indexes of renal function. In mouse models of UUO (unilateral ureteral obstruction), we found that local C3 was constitutively expressed throughout the kidney in the interstitium, from which it was released by F4/80+macrophages. After the depletion of macrophages using clodronate, mice lacking macrophages exhibited reductions in C3 expression and renal tubulointerstitial fibrosis. Blocking C3 expression with a C3 and C3aR inhibitor provided similar protection against renal tubulointerstitial fibrosis. These protective effects were associated with reduced pro-inflammatory cytokines, renal recruitment of inflammatory cells, and the Th17 response. in vitro, recombinant C3a significantly enhanced T cell proliferation and IL-17A expression, which was mediated through phosphorylation of ERK, STAT3, and STAT5 and activation of NF-kB in T cells. More importantly, blockade of C3a by a C3aR inhibitor drastically suppressed IL-17A expression in C3a-stimulated T cells. We propose that local C3 secretion by macrophages leads to IL-17A-mediated inflammatory cell infiltration into the kidney, which further drives fibrogenic responses. Our findings suggest that inhibition of the C3a/C3aR pathway is a novel therapeutic approach for obstructive nephropathy.
Collapse
Affiliation(s)
- Yanyan Liu
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Liang
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiu Zhang
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haotian Wei
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Luo
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuwang Ge
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Garcia-Rodriguez KM, Goenka A, Alonso-Rasgado MT, Hernández-Pando R, Bulfone-Paus S. The Role of Mast Cells in Tuberculosis: Orchestrating Innate Immune Crosstalk? Front Immunol 2017; 8:1290. [PMID: 29089945 PMCID: PMC5650967 DOI: 10.3389/fimmu.2017.01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis causes more annual deaths globally than any other infectious disease. However, progress in developing novel vaccines, diagnostics, and therapies has been hampered by an incomplete understanding of the immune response to Mycobacterium tuberculosis (Mtb). While the role of many immune cells has been extensively explored, mast cells (MCs) have been relatively ignored. MCs are tissue resident cells involved in defense against bacterial infections playing an important role mediating immune cell crosstalk. This review discusses specific interactions between MCs and Mtb, their contribution to both immunity and disease pathogenesis, and explores their role in orchestrating other immune cells against infections.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Maria T. Alonso-Rasgado
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubiran”, Mexico City, Mexico
| | - Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|