1
|
Velázquez-Enríquez JM, Santos-Álvarez JC, Ramírez-Hernández AA, Reyes-Jiménez E, Pérez-Campos Mayoral L, Romero-Tlalolini MDLÁ, Jiménez-Martínez C, Arellanes-Robledo J, Villa-Treviño S, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Chlorogenic acid attenuates idiopathic pulmonary fibrosis: An integrated analysis of network pharmacology, molecular docking, and experimental validation. Biochem Biophys Res Commun 2024; 734:150672. [PMID: 39260206 DOI: 10.1016/j.bbrc.2024.150672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
AIMS Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung condition, the cause of which remains unknown and for which no effective therapeutic treatment is currently available. Chlorogenic acid (CGA), a natural polyphenolic compound found in different plants and foods, has emerged as a promising agent due to its anti-inflammatory, antioxidant, and antifibrotic properties. However, the molecular mechanisms underlying the therapeutic effect of CGA in IPF remain unclear. The purpose of this study was to analyze the pharmacological impact and underlying mechanisms of CGA in IPF. MAIN METHODS Using network pharmacology analysis, genes associated with IPF and potential molecular targets of CGA were identified through specialized databases, and a protein-protein interaction (PPI) network was constructed. Molecular docking was performed to accurately select potential therapeutic targets. To investigate the effects of CGA on lung histology and key gene expression, a murine model of bleomycin-induced lung fibrosis was used. KEY FINDINGS Network pharmacology analysis identified 384 were overlapped between CGA and IPF. Key targets including AKT1, TP53, JUN, CASP3, BCL2, MMP9, NFKB1, EGFR, HIF1A, and IL1B were identified. Pathway analysis suggested the involvement of cancer, atherosclerosis, and inflammatory processes. Molecular docking confirmed the stable binding between CGA and targets. CGA regulated the expression mRNA of EGFR, MMP9, AKT1, BCL2 and IL1B and attenuated pulmonary fibrosis in the mouse model. SIGNIFICANCE CGA is a promising multi-target therapeutic agent for IPF, which is supported by its efficacy in reducing fibrosis through the modulation of key pathways. This evidence provides a basis to further investigate CGA as an IPF potential treatment.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Facultad Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - María de Los Ángeles Romero-Tlalolini
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City, 07738, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica - INMEGEN, México City, 14610, Mexico; Dirección Adjunta de Investigación Humanística y Científica, Consejo Nacional de Humanidades, Ciencias y Tecnologías - CONAHCYT, México City, 03940, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| |
Collapse
|
2
|
Deng L, Ouyang B, Tang W, Wang N, Yang F, Shi H, Zhang Z, Yu H, Chen M, Wei Y, Dong J. Icariside II modulates pulmonary fibrosis via PI3K/Akt/β-catenin pathway inhibition of M2 macrophage program. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155687. [PMID: 38759312 DOI: 10.1016/j.phymed.2024.155687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a debilitating interstitial lung disorder characterized by its limited therapeutic interventions. Macrophages, particularly the alternatively activated macrophages (M2 subtype), have been acknowledged for their substantial involvement in the development of pulmonary fibrosis. Hence, targeting macrophages emerges as a plausible therapeutic avenue for IPF. Icariside II (ISE II) is a natural flavonoid glycoside molecule known for its excellent anti-tumor and anti-fibrotic activities. Nevertheless, the impact of ISE II on pulmonary fibrosis and the intricate mechanisms through which it operates have yet to be elucidated. OBJECTIVE To scrutinize the impact of ISE II on the regulation of M2 macrophage polarization and its inhibitory effect on pulmonary fibrosis, as well as to delve deeper into the underlying mechanisms of its actions. METHODS The effect of ISE II on proliferation and apoptosis in RAW264.7 cells was assessed through the use of EdU-488 labeling and the Annexin V/PI assay. Flow cytometry, western blot, and qPCR were employed to detect markers associated with the M2 polarization phenotype. The anti-fibrotic effects of ISE II in NIH-3T3 cells were investigated in a co-culture with M2 macrophages. Si-Ctnnb1 and pcDNA3.1(+)-Ctnnb1 plasmid were used to investigate the mechanism of targeted intervention. The murine model of pulmonary fibrosis was induced by intratracheal administration of bleomycin (BLM). Pulmonary function, histopathological manifestations, lung M2 macrophage infiltration, and markers associated with pulmonary fibrosis were evaluated. Furthermore, in vivo transcriptomics analysis was employed to elucidate differentially regulated genes in lung tissues. Immunofluorescence, western blot, and immunohistochemistry were conducted for corresponding validation. RESULTS Our investigation demonstrated that ISE II effectively inhibited the proliferation of RAW264.7 cells and mitigated the pro-fibrotic characteristics of M2 macrophages, exemplified by the downregulation of CD206, Arg-1, and YM-1, Fizz1, through the inhibition of the PI3K/Akt/β-catenin signaling pathway. This impact led to the amelioration of myofibroblast activation and the suppression of nuclear translocation of β-catenin of NIH-3T3 cells in a co-culture. Consequently, it resulted in decreased collagen deposition, reduced infiltration of profibrotic macrophages, and a concurrent restoration of pulmonary function in mice IPF models. Furthermore, our RNA sequencing results showed that ISE II could suppress the expression of genes related to M2 polarization, primarily by inhibiting the PI3K/Akt and β-catenin signaling pathway. In essence, our findings suggest that ISE II holds potential as an anti-fibrotic agent by orchestrating macrophage polarization. This may have significant implications in clinical practice. CONCLUSION This study has provided evidence that ISE II exerts a significant anti-fibrotic effect by inhibiting macrophage M2 polarization through the suppression of the PI3K/Akt/β-catenin signaling pathway. These findings underscore the potential of ISE II as a promising candidate for the development of anti-fibrotic pharmaceuticals in the future.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Boshu Ouyang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Na Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangyong Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhenhua Zhang
- Shanghai Fifth People's Hospital, Fudan University, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Liu Y, Sun W, Shen N, Hao W, Xin H, Che F, Cui Y. Network pharmacology and molecular docking combined with widely targeted metabolomics to elucidate the potential compounds and targets of Euphorbia helioscopia seeds for the treatment of pulmonary fibrosis. Comput Biol Med 2023; 160:107007. [PMID: 37150086 DOI: 10.1016/j.compbiomed.2023.107007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The whole herb of Euphorbia helioscopia has been traditionally used for treating pulmonary tuberculosis, malaria, warts, lung cancer and bacillary dysentery for a long time in China. However, E. helioscopia seeds are often discarded and its medicinal value is often ignored, resulting in a waste of resources. METHOD In this work, widely targeted metabolomics based on UPLC-ESI-QTRAP-MS/MS methods and metware database (MWDB) were firstly used to identify the chemical compositions of EHS. Besides, network pharmacology, molecular docking and molecular dynamics simulation were performed for elucidating the potential compounds and targets of E. helioscopia seeds for the treatment of pulmonary fibrosis via common database (like TCMSP, Genecards, DAVID, STRING) and common software (like Sybyl, Cytoscape, Pymol and Schrödinger). RESULT The results of widely targeted metabolomics showed 231 compounds including 12 categories were identified. The highest content compositions are lipids (33.89%) followed by amino acids and derivatives (21.78%), nucleotides and derivatives (15.73%), as well as the content of functional ingredients like phenolic acids (7.33%), alkaloids (7.03%) and flavonoids (4.51%) are relatively high. Besides, the results of network pharmacology and molecular docking showed that EHS presented anti-pulmonary fibrosis medicinal value through multi-ingredients, multi-targets and multi-pathways approach. Key ingredients including 9-Hydroxy-12-oxo-15(Z)-octadecenoic acid, Nordihydrocapsiate, 1-O-Salicyl-d-glucose, 9-(Arabinosyl)hypoxanthine, Xanthosine and Galangin-7-O-glucoside. Key targets including SRC, HSP90AA1, AKT1, EGFR, JUN, EP300 and VEGFA, and key signaling pathways mainly related to AGE-RAGE, EGFR tyrosine kinase inhibitor resistance, VEGF and HIF-1 signaling pathway. Molecular dynamics simulation showed that HSP90AA1 and 9-Hydroxy-12-oxo-15(Z)-octadecenoic complex (with the highest docking score) have a stable combination effect. CONCLUSION In conclusion, this study revealed the chemical compositions of EHS and its anti-pulmonary fibrosis medicinal effect for the first time, it will provide scientific insight for the development of EHS as medicinal resource.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Wanqing Sun
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Wenhua Hao
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Fengyuan Che
- Central Lab and Neurology Department of Linyi People's Hospital, Linyi, 276000, China.
| | - Yulei Cui
- Central Lab and Neurology Department of Linyi People's Hospital, Linyi, 276000, China; School of Medicine, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
5
|
Chen H, Lin Y, Zeng L, Liu S. Elucidating the mechanism of Hongjinshen decoction in the treatment of pulmonary fibrosis based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e32323. [PMID: 36595795 PMCID: PMC9794259 DOI: 10.1097/md.0000000000032323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To explore the mechanism of compound Hongginshen decoction in improving pulmonary fibrosis based on network pharmacology. METHODS The active components and targets of ginseng and Salvia miltiorrhiza were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The chemical components of Rhodiola, Ophiopogon japonicus, and Dendrobium were screened using the Traditional Chinese Medicine Integrated Database (TCMID), and the target compounds were predicted by the Swisstargets method. The related target genes of pulmonary fiber (PF) were screened by the Genecards database and the National Center of Biotechnology Information (NCBI) database. The protein-protein interaction network was drawn using the string database and Cytoscape software, and the network topology was analyzed. Then, using R3.6.3 software, biological processes, molecular function, cell component enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out on the common targets of drugs and diseases. The network diagram of the "traditional Chinese medicine composition disease target" of Compound Hongginshen Decoction was constructed and analyzed with the software of Cytoscape 3.6.1. RESULTS We identified 159 active components and 2820 targets in Compound Hongginshen Decoction, and 2680 targets in pulmonary fibrosis. A total of 343 common targets were obtained by the intersection of drug targets and disease targets. protein-protein interaction protein interaction network analysis showed that PIK3CA, PIK3R1, MAPK1, SRC, AKT1, and so on may be the core targets of the compound Hongjingshen recipe in the treatment of pulmonary fibrosis. Gene Ontology (GO) enrichment analysis identified 3463 items, and KEGG pathway enrichment analysis identified 181 related signaling pathways, including the PI3K-Akt signaling pathway, HCMV pathway, Hb pathway, PGs pathway, and KSHV signaling pathway. CONCLUSION Compound Hongginshen Decoction has the characteristics of a multichannel and multitargeted effect in the treatment of pulmonary fibrosis. Radix Ophiopogonis and Dendrobium officinale play a key role in the treatment of pulmonary fibrosis. The whole compound prescription may play a therapeutic role by affecting cell metabolism, being anti-inflammatory, regulating the immune system, promoting angiogenesis, and improving anaerobic metabolism.
Collapse
Affiliation(s)
- Haixu Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Lin
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Clinical and Medical Technology, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Lianlin Zeng
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- * Correspondence: Shiwei Liu, Department of Rehabilitation Medicine, Zigong No.4 People’s Hospital, Sichuan 643000, China (e-mail: ) and Lianlin Zeng, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China (e-mail: )
| | - Shiwei Liu
- Department of Rehabilitation Medicine, Zigong No.4 People’s Hospital, Sichuan, China
- * Correspondence: Shiwei Liu, Department of Rehabilitation Medicine, Zigong No.4 People’s Hospital, Sichuan 643000, China (e-mail: ) and Lianlin Zeng, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China (e-mail: )
| |
Collapse
|
6
|
Emerging Effects of IL-33 on COVID-19. Int J Mol Sci 2022; 23:ijms232113656. [PMID: 36362440 PMCID: PMC9658128 DOI: 10.3390/ijms232113656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Collapse
|
7
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
8
|
Zhang W, Yuan Y, Huang G, Xiao J. Potential Molecular Mechanism of Guishen Huoxue Decoction against Intrauterine Adhesion Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4049147. [PMID: 36193142 PMCID: PMC9525774 DOI: 10.1155/2022/4049147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Objective Intrauterine adhesion (IUA) represents an endometrial repair disorder that is associated with menstrual disorders, recurrent pregnancy loss, and infertility. This study aimed to explore the underlying biological mechanisms of Guishen Huoxue decoction for the treatment of IUA based on network pharmacology. Methods The selection of active compounds for Guishen Huoxue decoction and prediction of relevant targets were performed by the TCMSP and Swiss Target Prediction databases, respectively. The targets of IUA were obtained by three databases, including Online Mendelian Inheritance in Man (OMIM), DisGeNET, and GeneCards. The drug-disease regulatory network was constructed via Cytoscape software, following the acquisition of common genes of active compounds of drug Guishen Huoxue decoction and disease IUA, which was carried out through Venny software. Protein-protein interaction (PPI) network and function enrichment analyses were performed. Results According to the data obtained from TCMSP, a total of 200 potential active compounds of Guishen Huoxue decoction and their related targets (1068) were screened by the Swiss Target Prediction database. 1303 disease targets and 134 common targets were identified. The drug-disease regulatory network showed that 165 active compounds were found to be involved in the treatment of IUA. Among 134 common targets, AKT1, SRC, TP53, VEGFA, and IL-6 were predicted as core genes against IUA. PI3K-Akt, Rap1, Ras, and AGE-RAGE were the main signaling pathways that participated in the treatment of Guishen Huoxue decoction for IUA. Conclusion The active compounds of Guishen Huoxue decoction confer therapeutic effects against IUA by regulating fibrosis, inflammation, and oxidative stress through major signaling pathways such as PI3K-Akt and AGE-RAGE.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Gynaecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynaecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuan Yuan
- Department of Gynaecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Guangrong Huang
- Department of Gynaecology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jing Xiao
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Phuengmaung P, Mekjaroen J, Saisorn W, Chatsuwan T, Somparn P, Leelahavanichkul A. Rapid Synergistic Biofilm Production of Pseudomonas and Candida on the Pulmonary Cell Surface and in Mice, a Possible Cause of Chronic Mixed Organismal Lung Lesions. Int J Mol Sci 2022; 23:ijms23169202. [PMID: 36012475 PMCID: PMC9409386 DOI: 10.3390/ijms23169202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the possible co-presence of Pseudomonas aeruginosa and Candida albicans (the most common nosocomial pathogens) in lungs, rapid interkingdom biofilm production is possible. As such, PA+CA produced more dominant biofilms on the pulmonary epithelial surface (NCI-H292) (confocal fluorescent extracellular matrix staining) with dominant psl upregulation, as demonstrated by polymerase chain reaction (PCR), after 8 h of experiments than PA alone. With a proteomic analysis, rhamnosyltransferase RhlB protein (Psl-associated quorum-sensing protein) was found to be among the high-abundance proteins in PA+CA than in PA biofilms, supporting psl-mediated biofilms in PA+CA on the cell surface. Additionally, PA+CA increased supernatant cytokines (IL-8 and IL-13, but not TNF-α, IL-6, and IL-10) with a similar upregulation of TLR-4, TLR-5, and TLR-9 (by PCR) compared with PA-stimulated cells. The intratracheal administration of PA+CA induced a greater severity of sepsis (serum creatinine, alanine transaminase, serum cytokines, and histology score) and prominent biofilms (fluorescent staining) with psl upregulation (PCR). In comparison with PA+CA biofilms on glass slides, PA+CA biofilms on biotic surfaces were more prominent (fluorescent staining). In conclusion, PA+CA induced Psl-predominant biofilms on the pulmonary cell surface and in mice with acute pneumonia, and these biofilms were more prominent than those induced by PA alone, highlighting the impact of Candida on rapid interkingdom biofilm production.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Mekjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| |
Collapse
|
10
|
Aripova N, Duryee MJ, Hunter CD, Ryan EM, Daubach EC, Jones SQ, Bierman MM, Ragland AS, Mitra A, England BR, Romberger DJ, Thiele GM, Mikuls TR. Peptidyl arginine deiminase expression and macrophage polarization following stimulation with citrullinated and malondialdehyde-acetaldehyde modified fibrinogen. Int Immunopharmacol 2022; 110:109010. [PMID: 35785731 DOI: 10.1016/j.intimp.2022.109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Post-translational modifications of extracellular matrix proteins such as fibrinogen may lead to tolerance loss and have been implicated in rheumatoid arthritis (RA) pathogenesis. The purpose of this study was to determine whether fibrinogen (FIB) modified with citrulline (CIT), malondialdehyde-acetaldehyde (MAA) or both leads to altered macrophage polarization, peptidyl arginine deiminase (PAD) expression, or production of citrullinated proteins. METHODS PMA-treated U-937 cells (M0 cells) were stimulated with MAA, CIT or MAA-CIT modified FIB. Macrophage (M1/M2) phenotypes were evaluated by flow cytometry, RT-PCR, and ELISA. PAD enzyme expression and protein citrullination was evaluated using RT-PCR and Western Blot. RESULTS Flow cytometry revealed that M0 macrophages stimulated with FIB-MAA-CIT resulted in mixed M1/M2 phenotypes as demonstrated by cell surface expression and mRNA levels of CD14, CD192, CD163, and CD206 (p < 0.001 vs. others), and the release of IL-18, IP-10, CCL22, and IL-13 (p < 0.001 vs. others). While FIB-MAA treated M0 cells demonstrated a mixed M1/M2 phenotype, cytokine and cell surface markers differed from FIB-MAA-CIT. Finally, M0 cells treated with FIB-CIT demonstrated markers and cytokines consistent with only the M1-like phenotype. Exposure of M0 cells to FIB-MAA-CIT (at 48 h) and FIB-MAA (at 24 h) led to increased mRNA expression and protein expression of PAD2 (p < 0.001) with increased protein citrullination. CONCLUSION These findings suggest that MAA-modification and citrullination of FIB, in isolation or combination, yield specific effects on macrophage polarization, PAD expression and citrullination that ultimately may induce inflammatory and fibrotic responses associated with RA.
Collapse
Affiliation(s)
- Nozima Aripova
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Carlos D Hunter
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Evan M Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric C Daubach
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Spencer Q Jones
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madison M Bierman
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Austin S Ragland
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ananya Mitra
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryant R England
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Debra J Romberger
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ted R Mikuls
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
11
|
Shi Y, Li J, Chen H, Hu Y, Tang L, Zhou X, Tao M, Lv Z, Chen S, Qiu A, Liu N. Pharmacologic Inhibition of Histone Deacetylase 6 Prevents the Progression of Chlorhexidine Gluconate-Induced Peritoneal Fibrosis by Blockade of M2 Macrophage Polarization. Front Immunol 2022; 13:899140. [PMID: 35784347 PMCID: PMC9240186 DOI: 10.3389/fimmu.2022.899140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and thus restricts the wide application of PD in clinic. Recently we have demonstrated that histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in peritoneal fibrosis have not been elucidated. Here, we focused on the role and mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased the expression of acetylation Histone H3 and acetylation α-tubulin. Moreover, our results revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by suppressing the activation of TGF-β/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To give a better understanding of the mechanisms, we further established two cell injured models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly abrogated M2 macrophage polarization dose-dependently by suppressing TGF-β/Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising target in peritoneal fibrosis treatment.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zexin Lv
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Na Liu,
| |
Collapse
|
12
|
Yang K, Tian C, Zhang C, Xiang M. The Controversial Role of IL-33 in Lung Cancer. Front Immunol 2022; 13:897356. [PMID: 35634336 PMCID: PMC9134343 DOI: 10.3389/fimmu.2022.897356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Interleukin-33 (IL-33) belongs to the interleukin-1 (IL-1) family, and its structure is similar to IL-18. When cells are damaged or undergo necrosis, mature form of IL-33 is secreted as a cytokine, which can activate the immune system and provide danger signals. The IL-33/ST2 signaling pathway is composed of IL-33, suppression of tumorigenicity 2 (ST2), and IL-1 receptor accessory protein (IL-1RAcP). IL-33 has been reported to be strongly associated with lung cancer progression, and can exhibit opposite effects on lung cancer under different conditions. In this review, we have summarized the structure and basic functions of IL-33, its possible function in immune regulation, and its role in pulmonary fibrosis as well as in lung cancer. We have highlighted the dual regulation of IL-33 in lung cancer and proposed potential lung cancer treatment regimens, especially new immunotherapies, based on its mechanism of action.
Collapse
Affiliation(s)
- Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy of Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ming Xiang,
| |
Collapse
|
13
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J, Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:18-32. [PMID: 35127370 PMCID: PMC8799876 DOI: 10.1016/j.apsb.2021.07.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Najrana T, Ahsan N, Abu-Eid R, Uzun A, Noble L, Tollefson G, Sanchez-Esteban J. Proteomic analysis of a murine model of lung hypoplasia induced by oligohydramnios. Pediatr Pulmonol 2021; 56:2740-2750. [PMID: 34102042 PMCID: PMC8631439 DOI: 10.1002/ppul.25525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Severe oligohydramnios (OH) due to prolonged loss of amniotic fluid can cause pulmonary hypoplasia. Animal model of pulmonary hypoplasia induced by amniotic fluid drainage is partly attributed to changes in mechanical compression of the lung. Although numerous studies on OH-model have demonstrated changes in several individual proteins, however, the underlying mechanisms for interrupting normal lung development in response to a decrease of amniotic fluid volume are not fully understood. In this study, we used a proteomic approach to explore differences in the expression of a wide range of proteins after induction of OH in a mouse model of pulmonary hypoplasia to find out the signaling/molecular pathways involved in fetal lung development. Liquid chromatography-massspectromery/mass spectrometry analysis found 474 proteins that were differentially expressed in OH-induced hypoplastic lungs in comparison to untouched (UnT) control. Among these proteins, we confirmed the downregulation of AKT1, SP-D, and CD200, and provided proof-of-concept for the first time about the potential role that these proteins could play in fetal lung development.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development at Rhode Island Hospital, Proteomics Core Facility, Division of Surgical Research, Brown University, Providence, Rhode Island, USA.,Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.,Mass Spectrometry, Proteomics and Metabolomic Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rasha Abu-Eid
- Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, UK
| | - Alper Uzun
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Center of Computational Molecular Biology, Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| | - Lelia Noble
- COBRE Center for Cancer Research Development at Rhode Island Hospital, Proteomics Core Facility, Division of Surgical Research, Brown University, Providence, Rhode Island, USA
| | - George Tollefson
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Women and Infants Hospital/Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
16
|
鄢 海, 邹 纯. [Mechanism and material basis of Lianhua Qingwen capsule for improving clinical cure rate of COVID-19: a study based on network pharmacology and molecular docking technology]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:20-30. [PMID: 33509749 PMCID: PMC7867482 DOI: 10.12122/j.issn.1673-4254.2021.01.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To explore the potential targets, signal pathways and biological functions that mediate the effect of Lianhua Qingwen capsule in improving clinical cure rate of COVID-19 in light of network pharmacology and molecular docking technology. METHODS TCMSP, Target, Prediction, CooLGeN, GeneCards, DAVID and other databases were searched for the active components and their target proteins from 13 herbs including Forsythia, Honeysuckle and roasted Ephedra used in Lianhua Qingwen capsule. The common target proteins, signal pathways and biological functions shared by these components and the clinical manifestations of COVID-19 (fever, cough, and fatigue) were identified to construct the network consisting of the component drugs in Lianhua Qingwen capsule, the active ingredients of, their targets of action, and the biological functions involved using Gephi software. RESULTS A total 160 active components including MOL000522, and MOL003283, MOL003365, MOL003006, MOL003014 in 13 component drugs in Lianhua Qingwen capsule produced therapeutic effects against COVID-19 through 57 target proteins including MAPK1, IL6, HSP90AA1, TNF, and CCL2, involving 35 signaling pathways including NOD-like receptor signaling pathway and Toll-like receptor signaling pathway. The results of molecular docking showed that 83 chemical components had total scores no less than 5.0 for docking with 12 target proteins (including MAPK1, IL6, and HSP90AA1) with high binding activities to form stable conformations. The binding of MOL000522, MOL004989, and MOL003330 with MAPK1; MOL001495 and MOL001494 with NLRP3; MOL004908, MOL004863 and MOL004806 with HSP90AA1; MOL001749 with TLR9; and MOL001495 with AKT1 all had total scores exceeding 9.0. CONCLUSIONS Lianhua Qingwen capsule contains multiple effective ingredients to improve clinical cure rate of COVID-19, and its therapeutic effect is mediated by multiple protein targets, signal pathways and biological functions.
Collapse
Affiliation(s)
- 海燕 鄢
- />皖南医学院药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - 纯才 邹
- />皖南医学院药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
17
|
Zhang B, Zhang D, Lv JT, Sa RN, Ma BB, Zhang XM, Lin ZJ. Molecular insight into the therapeutic promise of xuebijing injection against coronavirus disease 2019. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_22_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Wu H, Chen G, Wang J, Deng M, Yuan F, Gong J. TIM-4 interference in Kupffer cells against CCL4-induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif 2019; 53:e12731. [PMID: 31755616 PMCID: PMC6985653 DOI: 10.1111/cpr.12731] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES T-cell immunoglobulin domain and mucin domain-4 (TIM-4) is selectively expressed on antigen-presenting cells (APCs) and modulates various immune responses. However, the role of TIM-4 expressed by Kupffer cells (KCs) in liver fibrosis remains unclear. The present study aimed to explore whether and how TIM-4 expressed by KCs is involved in liver fibrosis. MATERIALS AND METHODS Mice chronic liver fibrosis models were established and divided into the olive-induced control group, CCL4-induced control group, olive-induced TIM-4 interference group and CCL4-induced TIM-4 interference group. Different techniques were used to monitor the fibrotic effects of TIM-4, including histopathological assays, Western blotting, ELISA and transmission electron microscopy. Additionally, mice liver transplant models were established to determine the fibrotic effects of TIM-4 on fibrosis after liver transplantation (LT). RESULTS We found that the induction of liver fibrosis by CCL4 was associated with TIM-4 expression in KCs. TIM-4 interference essentially contributed to liver fibrosis resolution. KCs from the TIM-4 interference group had decreased levels of pro-fibrotic markers, reduced TGF-β1 secretion and inhibited hepatic stellate cell (HSC) differentiation into myofibroblast-like cells. In addition, we used GdCl3 to verify that KCs are the primary source of TGF-β1 during fibrosis progression. Moreover, KCs from CCL4-induced mice showed increased ROS production, mitophagy activation and TGF-β1 secretion. However, TIM-4 interference in the KCs inhibited Akt1-mediated ROS production, resulting in the suppression of PINK1, Parkin and LC3-II/I activation and the reduction of TGF-β1 secretion during liver fibrosis. Additionally, TIM-4 interference potentially attenuated development of fibrosis after LT. CONCLUSIONS Our findings revealed the underlying mechanisms of TIM-4 interference in KCs to mitigate liver fibrosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyong Chen
- Department of Hepatobiliary and pancreatic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jingyuan Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghua Deng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangchao Yuan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|