1
|
Kumar S, Shankar Kaushik J, Verma S, Dabla S. Gabapentin as Add-on Therapy to Trihexyphenidyl in Children with Dyskinetic Cerebral Palsy: A Randomized, Controlled Trial. Indian J Pediatr 2023; 90:873-879. [PMID: 35867274 DOI: 10.1007/s12098-022-04265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To compare the efficacy of gabapentin as add-on therapy to trihexyphenidyl in the treatment of children with dyskinetic cerebral palsy (CP). METHODS An open-labelled, randomized, controlled trial was conducted among children aged 3-9 y with dyskinetic CP [Gross Motor Functional Classification System (GMFCS) 4-5]. Participants were assigned into two groups: gabapentin with trihexyphenidyl (n = 30) and trihexyphenidyl alone (n = 30). Dyskinesia Impairment Scale (DIS), Dystonia Severity Assessment Plan (DSAP), and International Classification of Functioning, Disability, and Health-Children and Youth Version (ICF-CY) were measured at baseline, 4 and 12 wk. RESULTS There was significant reduction in baseline dystonia in both the groups (DIS: p < 0.001; DSAP: p = 0.007; ICF-CY: p < 0.001) but when data were compared between the groups, there was no significant difference in the severity of dystonia at 4 wk and at 12 wk (DIS: p = 0.09; DSAP: p = 0.49; ICF-CY: p = 0.25). Constipation was the commonest side effect observed in both the groups [3 (11.5%) vs. 4 (14.3%)]. CONCLUSION Trihexyphenidyl alone is as effective as combination of gabapentin with trihexyphenidyl in decreasing the severity of dystonia at 12 wk. Hence, there is no added benefit of gabapentin as add-on therapy for dystonia among children with dyskinetic CP. TRIAL REGISTRATION CTRI/2019/04/018603.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Pediatrics, SGT University, Gurugram, Haryana, India
| | - Jaya Shankar Kaushik
- Department of Pediatrics, Pt. B. D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, 124001, India.
| | - Savita Verma
- Department of Pharmacology, Pt. B. D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Surekha Dabla
- Department of Neurology, Pt. B. D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
2
|
Caffall ZF, Wilkes BJ, Hernández-Martinez R, Rittiner JE, Fox JT, Wan KK, Shipman MK, Titus SA, Zhang YQ, Patnaik S, Hall MD, Boxer MB, Shen M, Li Z, Vaillancourt DE, Calakos N. The HIV protease inhibitor, ritonavir, corrects diverse brain phenotypes across development in mouse model of DYT-TOR1A dystonia. Sci Transl Med 2021; 13:13/607/eabd3904. [PMID: 34408078 DOI: 10.1126/scitranslmed.abd3904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/14/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.
Collapse
Affiliation(s)
- Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | - Joseph E Rittiner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Jennifer T Fox
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kanny K Wan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Miranda K Shipman
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.,Department of Neurology, Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27715, USA
| |
Collapse
|
3
|
Seyed MA, Ayesha S, Azmi N, Al-Rabae FM, Al-Alawy AI, Al-Zahrani OR, Hawsawi Y. The neuroprotective attribution of Ocimum basilicum: a review on the prevention and management of neurodegenerative disorders. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Bioactive principles from various natural resources including medicinal herbs have always played a crucial role in healthcare settings and increasingly became key players in drug discovery and development for many biopharmaceutical applications. Additionally, natural products (NPs) have immense arrangement of distinctive chemical structures with diverse functional groups that motivated numerous investigators including synthetic chemists to discover new therapeutic entities. Numerous pre-clinical investigations involving the animal models have evident the usefulness of these NPs against various human diseases including neurodegenerative disorders (NDs).
Main text
Ocimum basilicum Linn (O. basilicum L.), also known as sweet basil, is well practiced in traditional healthcare systems and has been used to treat various human illnesses, which include malaria, skin disease, diarrhea, bronchitis, dysentery, arthritis, eye diseases, and insect bites and emphasize the significance of the ethno-botanical approach as a potential source of novel drug leads With the growing interest in advanced techniques, herbal medicine and medicinal plants explorations are still considered to be a novel resource for new pharmacotherapeutic discovery and development. O. basilicum L and its bioactive principles including apigenin, eugenol, myretenal, β-sitosterol, luteolin, rosmarinic acid, carnosic acid, essential oil (EO)-rich phenolic compounds, and others like anthocyanins and flavones could be of therapeutic values in NDs by exhibiting their neuro-protective efficacy on various signaling pathways. The present comprehensive review collected various related information using the following searching engines such as PubMed, Science Direct, Google Scholar, etc. and focused mainly the English written documents. The search period comprised of last two decades until present.
Conclusion
Although these efficacious plant genera of prime importance and has potential medical and socioeconomic importance, yet the pivotal evidence for its neuroprotective potential in novel clinical trials remains lacking. However, with the available wealth of obtainable literature on this medicinal plant, which supports this review and concludes that O. basilicum L may function as a promising therapeutics for the treatment of NDs.
Collapse
|
4
|
Raslan IR, de Assis Pereira Matos PCA, Boaratti Ciarlariello V, Daghastanli KH, Rosa ABR, Arita JH, Aranda CS, Barsottini OGP, Pedroso JL. Beyond Typical Ataxia Telangiectasia: How to Identify the Ataxia Telangiectasia-Like Disorders. Mov Disord Clin Pract 2021; 8:118-125. [PMID: 33426167 PMCID: PMC7780949 DOI: 10.1002/mdc3.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia is one of the most common causes of autosomal recessive cerebellar ataxias. However, absence of telangiectasia, normal levels of alpha-fetoprotein and negative genetic test may direct to alternative diagnosis with similar phenotypes such as ataxia telangiectasia-like disorders (ATLD). CASES We report two instructive cases of ATLD: the first case with ataxia telangiectasia-like disorder type 1 related to MRE11A gene, and the second case with ataxia telangiectasia-like disorder type 2 related to PCNA gene. LITERATURE REVIEW ATLD is an unusual group of autosomal recessive diseases that share some clinical features and pathophysiological mechanisms with ataxia telangiectasia (AT). ATLD may be associated with mutations in the MRE11A (ATLD type 1) and PCNA (ATLD type 2) genes. ATLD belongs to the group of chromosomal instability syndromes. The reason for the term ATLD is related to the similar pathophysiological mechanisms observed in AT, which is characterized by chromosomal instability and radiosensitivity. CONCLUSIONS In this review, the main clinical features, biomarkers, brain imaging and genetics of ATLD are discussed. Mutations in the MRE11A and PCNA genes should be included in the differential diagnosis for early onset cerebellar ataxia with absence of telangiectasia and normal levels of alpha-fetoprotein.
Collapse
Affiliation(s)
- Ivana Rocha Raslan
- Department of Neurology, Ataxia UnitUniversidade Federal de São PauloSão PauloBrazil
| | | | | | | | | | | | | | | | - José Luiz Pedroso
- Department of Neurology, Ataxia UnitUniversidade Federal de São PauloSão PauloBrazil
| |
Collapse
|
5
|
Centen LM, Oterdoom DLM, Tijssen MAJ, Lesman-Leegte I, van Egmond ME, van Dijk JMC. Bilateral Pallidotomy for Dystonia: A Systematic Review. Mov Disord 2020; 36:547-557. [PMID: 33215750 PMCID: PMC8048649 DOI: 10.1002/mds.28384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Stereotactic lesioning of the bilateral globus pallidus (GPi) was one of the first surgical treatments for medication‐refractory dystonia but has largely been abandoned in clinical practice after the introduction of deep brain stimulation (DBS). However, some patients with dystonia are not eligible for DBS. Therefore, we reviewed the efficacy, safety, and sustainability of bilateral pallidotomy by conducting a systematic review of individual patient data (IPD). Guidelines of the Preferred Reporting Items for Systematic Reviews and Meta‐Analyses and IPD were followed. In May 2020, Medline, Embase, Web of Science, and Cochrane Library were searched for studies reporting on outcome of bilateral pallidotomy for dystonia. If available, IPD were collected. In this systematic review, 100 patients from 33 articles were evaluated. Adverse events were reported in 20 patients (20%), of which 8 were permanent (8%). Pre‐and postoperative Burke‐Fahn‐Marsden Dystonia Rating Movement Scale scores were available for 53 patients. A clinically relevant improvement (>20%) of this score was found in 42 of 53 patients (79%). Twenty‐five patients with status dystonicus (SD) were described. In all but 2 the SD resolved after bilateral pallidotomy. Seven patients experienced a relapse of SD. Median‐reported follow‐up was 12 months (n = 83; range: 2–180 months). Based on the current literature, bilateral pallidotomy is an effective and relatively safe procedure for certain types of dystonia, particularly in medication‐refractory SD. Although due to publication bias the underreporting of negative outcomes is very likely, bilateral pallidotomy is a reasonable alternative to DBS in selected dystonia patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Liesanne M Centen
- Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Expertise Center Movement Disorders Groningen, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Ivon Lesman-Leegte
- Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Expertise Center Movement Disorders Groningen, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Martje E van Egmond
- Department of Neurology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Expertise Center Movement Disorders Groningen, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Botulinum neurotoxin injections for muscle-based (dystonia and spasticity) and non-muscle-based (neuropathic pain) pain disorders: a meta-analytic study. J Neural Transm (Vienna) 2020; 127:935-951. [PMID: 32146504 DOI: 10.1007/s00702-020-02163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Apart from the known efficacy of Botulinum Neurotoxin Type A (BoNT/A) in hyperactive striated and smooth muscles, different pain states have become potential targets of toxin effects. This present study determined the comparative toxin effectiveness in pain reduction among those patients injected with BoNT/A in muscle-based and in non-muscle-based conditions. Randomized controlled trials (RCTs) on the effect of BoNT/A on selected pain conditions were included. The conditions were spasticity and dystonia for muscle-based pain. For non-muscle-based pain, conditions included were painful diabetic neuropathy (PDN), post-herpetic neuralgia (PHN), trigeminal neuralgia (TN), complex regional pain syndrome (CRPS), and spinal cord injury (SCI). In view of possibly differing pathophysiology, myofascial pain, temporomandibular joint (TMJ), other joint or tendon pains, cervicogenic and lumbar pains, migraine and visceral pain syndromes were excluded. Standardized mean difference was used as the effect measure and computed with STATA. 25 RCTs were analyzed. Pooled estimates showed significantly lower pain score in the Treatment group (z = 5.23, p < 0.01, 95% CI = - 0.75, - 0.34). Subgroup analyses showed that BoNT/A significantly reduced both muscle-based (z = 3.78, p < 0.01, 95% CI = - 0.72, - 0.23) and non-muscle-based (z = 3.37, p = 0.001, 95% CI = - 1.00, - 0.27) pain. Meta-regression using four covariates namely dosage, route, frequency and duration was done which revealed that dosage significantly affects standardized mean differences, while the other three covariates were insignificant. The joint F-test was found to be insignificant (p value = 0.1182). The application of the model with these covariates does not significantly explain the derived heterogeneity of standardized mean differences. In conclusion, BoNT/A can be effectively used in muscle-based and non-muscle-based pain disorders. We detected no difference between the presence and magnitude of pain relief favoring muscle-based compared to non-muscle-based pain. Thus, we cannot say whether or not there might be independent mechanisms of toxin-induced pain relief for pain generated from either muscle or nerve hyperactivity.
Collapse
|
7
|
The Therapeutic Potential of Non-invasive Neurostimulation for Motor Skill Learning in Children with Neurodevelopmental Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-0155-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Russ JB, Nallappan AM, Robichaux-Viehoever A. Management of Pediatric Movement Disorders: Present and Future. Semin Pediatr Neurol 2018; 25:136-151. [PMID: 29735111 DOI: 10.1016/j.spen.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Management of movement disorders in children is an evolving field. This article outlines the major categories of treatment options for pediatric movement disorders and general guidelines for their use. We review the evidence for existing therapies, which continue to lack large-scale controlled trials to guide treatment decisions. The field continues to rely on extrapolations from adult studies and lower quality evidence such as case reports and case series to guide treatment guidelines and consensus statements. Developments in new pharmaceuticals for rare diseases have begun to provide hope for those cases in which a genetic diagnosis can be made. Advances in surgical therapies such as deep brain stimulation as well as new modes of treatment such as gene therapy, epigenetic modulation, and stem cell therapy hold promise for improving outcomes in both primary and secondary causes of movement disorders. There is a critical need for larger, multicenter, controlled clinical trials to fully evaluate treatments for pediatric movement disorders.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Akila M Nallappan
- Undergraduate Program, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
9
|
van Os NJH, Haaxma CA, van der Flier M, Merkus PJFM, van Deuren M, de Groot IJM, Loeffen J, van de Warrenburg BPC, Willemsen MAAP. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol 2017; 59:680-689. [PMID: 28318010 DOI: 10.1111/dmcn.13424] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 12/29/2022]
Abstract
Ataxia-telangiectasia is a rare, neurodegenerative, and multisystem disease, characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classic ataxia-telangiectasia phenotype, a variant phenotype exists with partly overlapping but some distinctive disease characteristics. This guideline summarizes frequently encountered medical problems in the disease course of patients with classic and variant ataxia-telangiectasia, in the domains of neurology, immunology and infectious diseases, pulmonology, anaesthetic and perioperative risk, oncology, endocrinology, and nutrition. Furthermore, it provides a practical guide with evidence- and expert-based recommendations for the follow-up and treatment of all these different clinical topics.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte A Haaxma
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter J F M Merkus
- Department of Pediatric Pulmonology, Amalia Children's Hospital and Canisius Wilhelmina Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imelda J M de Groot
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Sophia Children's Hospital, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Maas RP, Wassenberg T, Lin JP, van de Warrenburg BP, Willemsen MA. l-Dopa in dystonia. Neurology 2017; 88:1865-1871. [DOI: 10.1212/wnl.0000000000003897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/26/2017] [Indexed: 11/15/2022] Open
Abstract
“Every child exhibiting dystonia merits anl-dopa trial, lest the potentially treatable condition of dopa-responsive dystonia (DRD) is missed” has been a commonly cited and highly conserved adage in movement disorders literature stemming from the 1980s. We here provide a historical perspective on this statement, discuss the current diagnostic and therapeutic applications ofl-dopa in everyday neurologic practice, contrast these with its approved indications, and finish with our view on both a diagnostic and therapeutic trial in children and adults with dystonia. In light of the relatively low prevalence of DRDs, the large interindividual variation in the requiredl-dopa dose, the uncertainty about an adequate trial duration, the substantial advances in knowledge on etiology and pathophysiology of these disorders, and the availability of various state-of-the-art diagnostic tests, we think that a diagnosticl-dopa trial as a first step in the approach of early-onset dystonia (≤25 years) is outdated. Rather, in high-resource countries, we suggest to usel-dopa after biochemical corroboration of a defect in dopamine biosynthesis, in genetically confirmed DRD, or if nigrostriatal degeneration has been demonstrated by nuclear imaging in adult patients presenting with lower limb dystonia. Furthermore, our literature study on the effect of a therapeutic trial to gain symptomatic relief revealed thatl-dopa has occasionally proven beneficial in several established “non-DRDs” and may therefore be considered in selected cases of dystonia due to other causes. In summary, we argue against the application ofl-dopa in every patient with early-onset dystonia and support a more rational therapeutic use.
Collapse
|
11
|
Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 2016; 7:157. [PMID: 27378922 PMCID: PMC4906029 DOI: 10.3389/fphar.2016.00157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department Physiology and Pharmacology, SUNY Downstate Medical Center, State University of New YorkBrooklyn, NY, USA; Department Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| | - Salvador Dura-Bernal
- Department Physiology and Pharmacology, SUNY Downstate Medical Center, State University of New York Brooklyn, NY, USA
| | - Peter Lakatos
- Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, USA
| | - Terence D Sanger
- Department Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA; Division Neurology, Child Neurology and Movement Disorders, Children's Hospital Los AngelesLos Angeles, CA, USA
| | - William W Lytton
- Department Physiology and Pharmacology, SUNY Downstate Medical Center, State University of New YorkBrooklyn, NY, USA; Department Neurology, SUNY Downstate Medical CenterBrooklyn, NY, USA; Department Neurology, Kings County Hospital CenterBrooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral ScienceBrooklyn, NY, US
| |
Collapse
|
12
|
Abstract
Strokes, whether ischemic or hemorrhagic, are among the most common causes of secondary movement disorders in elderly patients. Stroke-related (vascular) movement disorders, however, are uncommon complications of this relatively common disease. The spectrum of post-stroke movement disorders is broad and includes both hypo- and hyperkinetic syndromes. Post-stroke dyskinesias are involuntary hyperkinetic movements arising from cerebrovascular insults and often present with mixed phenotypes of hyperkinesia which can sometimes be difficult to classify. Nevertheless, identification of the most relevant motor phenotype, whenever possible, allows for a more specific phenomenological categorization of the dyskinesia and thus helps guide its treatment. Fortunately, post-stroke dyskinesias are usually self-limiting and resolve within 6 to 12 months of onset, but a short-term pharmacotherapy might sometimes be required for symptom control. Functional neurosurgical interventions targeting the motor thalamus or globus pallidus interna might be considered for patients with severe, disabling, and persistent dyskinesias (arbitrarily defined as duration longer than 12 months).
Collapse
Affiliation(s)
- Mohammad Obadah Nakawah
- Stanely H. Appel, Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, USA
| | - Eugene C Lai
- Stanely H. Appel, Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
13
|
Moawad EMI, Abdallah EAA. Botulinum Toxin in Pediatric Neurology: Switching Lanes From Death to Life. Glob Pediatr Health 2015; 2:2333794X15590149. [PMID: 27335961 PMCID: PMC4784590 DOI: 10.1177/2333794x15590149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are natural molecules produced by anaerobic spore-forming bacteria called Clostradium boltulinum. The toxin has a peculiar mechanism of action by preventing the release of acetylcholine from the presynaptic membrane. Consequently, it has been used in the treatment of various neurological conditions related to muscle hyperactivity and/or spasticity. Also, it has an impact on the autonomic nervous system by acting on smooth muscle, leading to its use in the management of pain syndromes. The use of botulinum toxin in children separate from adults has received very little attention in the literature. This review presents the current data on the use of botulinum neurotoxin to treat various neurological disorders in children.
Collapse
|
14
|
Altered striatal and pallidal connectivity in cervical dystonia. Brain Struct Funct 2013; 220:513-23. [PMID: 24259114 DOI: 10.1007/s00429-013-0671-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
Abstract
Cervical dystonia is a neurological movement disorder characterized by involuntary, abnormal movements of the head and neck. Injecting the overactive muscles with botulinum toxin is the gold standard treatment, supported by good evidence (Delnooz and van de Warrenburg in Ther Adv Neurol Disord 5:221-240, 2012). Current views on its pathophysiology support a role for the basal ganglia, although there are probably more widespread abnormalities in brain networks in which the basal ganglia are important nodes. Their precise role in cervical dystonia is unknown. We sought to address this issue by examining alterations in the functional connectivity of the basal ganglia. Using resting-state functional MRI and functional parcellations, we investigated functional connectivity in cervical dystonia patients and age- and gender-matched healthy controls. We mapped connectivity voxel-wise across the striatum and the globus pallidus for a set of brain masks, defined from well-known resting-state networks. Scans were repeated before and after botulinum toxin injections to see whether connectivity abnormalities were perhaps restored. We found that in cervical dystonia (1) the right mid-dorsal putamen and right external globus pallidus have reduced connectivity with a network comprising left fronto-parietal regions; and (2) the bilateral anterior putamen shows a trend towards enhanced connectivity with a network comprising sensorimotor areas. We observed that botulinum toxin treatment induces reorganization between a network comprising mainly (pre)frontal areas and (1) the right mid-ventral striatum and (2) the right external globus pallidus. Cervical dystonia patients have altered functional connectivity between the basal ganglia and some cortical regions that are part of specific brain networks that in part are influenced by botulinum toxin treatment. These connectivity abnormalities may be primary as well as secondary, perhaps compensatory, phenomena.
Collapse
|
15
|
Barbero M, Cescon C, Tettamanti A, Leggero V, Macmillan F, Coutts F, Gatti R. Myofascial trigger points and innervation zone locations in upper trapezius muscles. BMC Musculoskelet Disord 2013; 14:179. [PMID: 23758854 PMCID: PMC3683329 DOI: 10.1186/1471-2474-14-179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/29/2013] [Indexed: 11/26/2022] Open
Abstract
Background Myofascial trigger points (MTrPs) are hyperirritable spots located in taut bands of muscle fibres. Electrophysiological studies indicate that abnormal electrical activity is detectable near MTrPs. This phenomenon has been described as endplate noise and it has been purported to be associated MTrP pathophysiology. Thus, it is suggested that MTrPs will be overlap the innervation zone (IZ). The purpose of this work was to describe the location of MTrPs and the IZ in the right upper trapezius. Methods We screened 71 individuals and eventually enrolled 24 subjects with neck pain and active MTrPs and 24 neck pain-free subjects with latent MTrPs. Surface electromyography (sEMG) signals were detected using an electrode matrix during isometric contraction of the upper trapezius. A physiotherapist subsequently examined the subject’s trapezius to confirm the presence of MTrPs and establish their location. IZ locations were identified by visual analysis of sEMG signals. IZ and MTrPs locations were described using an anatomical coordinate system (ACS), with the skin area covered by the matrix divided into four quadrants. Results No significant difference was observed between active and latent MTrPs locations (P = 0.6). Forty-five MTrPs were in the third quadrant of the ACS, and 3 were included in second quadrant. IZs were located approximately midway between the seventh cervical vertebrae and the acromial angle in a limited area in the second and third quadrants. The mean distance between MTrP and IZ was 10.4 ± 5.8 mm. Conclusions According to the acquired results, we conclude that IZ and MTrPs are located in well-defined areas in upper trapezius muscle. Moreover, MTrPs in upper trapezius are proximally located to the IZ but not overlapped.
Collapse
Affiliation(s)
- Marco Barbero
- Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland.
| | | | | | | | | | | | | |
Collapse
|