1
|
Abu-Hassan AA, Mahdi WA, Alshehri S, Amin MM, El Hamd MA. Facile and green chemistry-compatible fluorescence spectroscopic applications of acid red 87 used to evaluate eletriptan, antimigraine, in its pharmaceutical and biological samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124400. [PMID: 38710139 DOI: 10.1016/j.saa.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Eletriptan (ETR), a selective pharmaceutical agent agonist of the 5-hydroxytryptamine1 receptor subtype, are primarily used to treat acute migraine attacks. ETR is a triptan-class medication that works by narrowing cerebral blood vessels and reducing chemicals that produce headache pain, light and sound sensitivity, and nausea. Due to its effectiveness in reducing migraine symptoms, it is a worthwhile choice for those looking for quick and efficient treatment. A green, raid, one-pot and straightforward fluorescence spectrometric method was employed to evaluate ETR in tablets and biological samples. By introducing the ETR drug and the fluorescent ligand, Acid red 87, in an acidic buffer, a quenching of the ligand native fluorescent was promptly produced. The quenching action was simply attributed to the selective ion-pair complex generation between the cationic target and the selected ligand. An increase in ETR concentration was linearly proportional to the quenching response in the 50.0 - 500.0 ng/mL range. The optimal configurations for adjusting the system's variable parameters were determined by examining the ETR-Acid red 87 system's response. Additionally, the sensor that was developed met the standards set by the International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use. The sensitivity thresholds of the approach were 13.8 and 42.0 ng/mL for the detection and quantification parameters, respectively, LOD and LOQ. This approach proficiently evaluated the pharmaceutical and biological samples of ETR. Finally, the proposed approach not only simplifies the analysis process but also limits the badimpact on the environment, making it a promising technique for analytical applications.
Collapse
Affiliation(s)
- Ahmed A Abu-Hassan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University 83523, Qena, Egypt.
| |
Collapse
|
2
|
Bernardo J, Valentão P. Herb-drug interactions: A short review on central and peripheral nervous system drugs. Phytother Res 2024; 38:1903-1931. [PMID: 38358734 DOI: 10.1002/ptr.8120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Herbal medicines are widely perceived as natural and safe remedies. However, their concomitant use with prescribed drugs is a common practice, often undertaken without full awareness of the potential risks and frequently without medical supervision. This practice introduces a tangible risk of herb-drug interactions, which can manifest as a spectrum of consequences, ranging from acute, self-limited reactions to unpredictable and potentially lethal scenarios. This review offers a comprehensive overview of herb-drug interactions, with a specific focus on medications targeting the Central and Peripheral Nervous Systems. Our work draws upon a broad range of evidence, encompassing preclinical data, animal studies, and clinical case reports. We delve into the intricate pharmacodynamics and pharmacokinetics underpinning each interaction, elucidating the mechanisms through which these interactions occur. One pressing issue that emerges from this analysis is the need for updated guidelines and sustained pharmacovigilance efforts. The topic of herb-drug interactions often escapes the attention of both consumers and healthcare professionals. To ensure patient safety and informed decision-making, it is imperative that we address this knowledge gap and establish a framework for continued monitoring and education. In conclusion, the use of herbal remedies alongside conventional medications is a practice replete with potential hazards. This review not only underscores the real and significant risks associated with herb-drug interactions but also underscores the necessity for greater awareness, research, and vigilant oversight in this often-overlooked domain of healthcare.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Safhi AY, Siddique W, Zaman M, Sarfraz RM, Shafeeq Ur Rahman M, Mahmood A, Salawi A, Sabei FY, Alsalhi A, Zoghebi K. Statistically Optimized Polymeric Buccal Films of Eletriptan Hydrobromide and Itopride Hydrochloride: An In Vivo Pharmacokinetic Study. Pharmaceuticals (Basel) 2023; 16:1551. [PMID: 38004417 PMCID: PMC10674159 DOI: 10.3390/ph16111551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, improve compliance with the patients of migraines and its associated symptoms. The prepared films were evaluated for various in vitro parameters, including surface morphology, mechanical strength, disintegration test (DT), total dissolving time (TDT), drug release and drug permeation, etc., and in vivo pharmacokinetic parameters, such as area under curve (AUC), mean residence time (MRT), half-life (t1/2), time to reach maximum concentration (Tmax), and time to reach maximum concentration (Cmax). The outcomes have indicated the successful preparation of the films, as SEM has confirmed the smooth surface and uniform distribution of drugs throughout the polymer matrix. The films were found to be mechanically stable as indicated by folding endurance studies. Furthermore, the optimized formulations showed a DT of 13 ± 1 s and TDT of 42.6 ± 0.75 s, indicating prompt disintegration as well as the dissolution of the films. Albino rabbits were used for in vivo pharmacokinetics, and the outcomes were evident of improved pharmacokinetics. The drug was found to rapidly permeate across the buccal mucosa, leading to increased bioavailability of the drug: Cmax of 130 and 119 ng/mL of ITHC and EHBR, respectively, as compared to 96 (ITHC) and 90 ng/mL (EHBR) of oral solution. The conclusion can be drawn that possible reasons for the enhanced bioavailability could be the increased surface area in the form of buccal films, its rapid disintegration, and faster dissolution, which led toward the rapid absorption of the drug into the blood stream.
Collapse
Affiliation(s)
- Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Waqar Siddique
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | | | | | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
4
|
Ramar T, Ilangovan A, A M Subbaiah M. Promoting Catalytic C-Selective Sulfonylation of Cyclopropanols against Conventional O-Sulfonylation Using Readily Available Sulfonyl Chlorides. J Org Chem 2023; 88:13553-13567. [PMID: 37708032 DOI: 10.1021/acs.joc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed β-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
| |
Collapse
|
5
|
Kang MS, Xin Khoo JY, Jia Z, Loh TP. Development of catalyst-free carbon-sulfur bond formation reactions under aqueous media and their applications. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Siddique W, Zaman M, Sarfraz RM, Butt MH, Rehman AU, Fassih N, Albadrani GM, Bayram R, Alfaifi MY, Abdel-Daim MM. The Development of Eletriptan Hydrobromide Immediate Release Buccal Films Using Central Composite Rotatable Design: An In Vivo and In Vitro Approach. Polymers (Basel) 2022; 14:polym14193981. [PMID: 36235932 PMCID: PMC9572369 DOI: 10.3390/polym14193981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The objective is to develop immediate release buccal films of Eletriptan Hydrobromide (EHBR) using hydroxypropyl methylcellulose (HPMC) E5. The buccal films have the ability to disintegrate rapidly and provide both systemic and local effects. The solvent casting method was employed to prepare the films and the central composite rotatable design (CCRD) model was used for film optimization. All the formulated films were characterized for physicochemical evaluation (Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), differential scanning calorimetry (DSC), and Scanning electron microscopy (SEM), in in-vitro, ex-vivo, and in-vivo drug release. The fabricated films were transparent, colorless, and evenly distributed. The FTIR spectra showed no chemical interaction between the drug and excipients. In in-vitro analysis, the film has the highest% drug release (102.61 ± 1.13), while a maximum of 92.87 ± 0.87% drug was diffused across the cellulose membrane having a pore size of 0.45 µm. In the ex-vivo study, drug diffusion across the goat mucosa was performed and 80.9% of the drug was released in 30 min. In-vivo results depict a mean half-life (t½) of 4.54 ± 0.18 h and a Cmax of 128 ± 0.87 (ng/mL); Tmax was achieved in 1 h. Furthermore, instability and histopathological studies buccal films were proven to be safe and act as an effective dosage form. In a nutshell, optimized and safe instant release EHBR buccal films were prepared that have the tendency to provide effect effectively.
Collapse
Affiliation(s)
- Waqar Siddique
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
- Correspondence: (M.Z.); (R.M.S.)
| | - Rai Muhammad Sarfraz
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (M.Z.); (R.M.S.)
| | - Muhammad Hammad Butt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Atta Ur Rehman
- Department of Pharmacy, Forman Christian College, Lahore 54000, Pakistan
| | - Noman Fassih
- Department of Medical Cell Biology, Faculty of Medicine, Uppsala University, 75123 Uppsala, Sweden
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Roula Bayram
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Oral transmucosal delivery of eletriptan for neurological diseases. Int J Pharm 2022; 627:122222. [PMID: 36155795 DOI: 10.1016/j.ijpharm.2022.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
Migraine is a highly prevalent neurological disease affecting circa 1 billion patients worldwide with severe incapacitating symptoms, which significantly diminishes the quality of life. As self-medication practice, oral administration of triptans is the most common option, despite its relatively slow therapeutic onset and low drug bioavailability. To overcome these issues, here we present, to the best of our knowledge, the first study on the possibility of oral transmucosal delivery of one of the safest triptans, namely eletriptan hydrobromide (EB). Based on a comprehensive set of in vitro and ex vivo experiments, we highlight the conditions required for oral transmucosal delivery, potentially giving rise to similar, or even higher, drug plasma concentrations expected from conventional oral administration. With histology and tissue integrity studies, we conclude that EB neither induces morphological changes nor impairs the integrity of the mucosal barrier following 4 h of exposure. On a cellular level, EB is internalized in human oral keratinocytes within the first 5 min without inducing toxicity at the relevant concentrations for transmucosal delivery. Considering that the pKa of EB falls within the physiologically range, we systematically investigated the effect of pH on both solubility and transmucosal permeation. When the pH is increased from 6.8 to 10.4, the drug solubility decreases drastically from 14.7 to 0.07 mg/mL. At pH 6.8, EB gave rise to the highest drug flux and total permeated amount across mucosa, while at pH 10.4 EB shows greater permeability coefficient and thus higher ratio of permeated drug versus applied drug. Permeation experiments with model membranes confirmed the pH dependent permeation profile of EB. The distribution of EB in different cellular compartments of keratinocytes is pH dependent. In brief, high drug ionization leads to higher association with the cell membrane, suggesting ionic interactions between EB and the phospholipid head groups. Moreover, we show that the chemical permeation enhancer DMSO can be used to enhance the drug permeation significantly (i.e., 12 to 36-fold increase). Taken together, this study presents important findings on transmucosal delivery of eletriptan via the oral cavity and paves the way for clinical investigations for a fast and safe migraine treatment.
Collapse
|
8
|
Siddique W, Sarfraz RM, Zaman M, Khan R, Gul M, Asghar F, Malik T, Saif A, Shamim QUA, Salawi A, Alshamrani M, Almoshari Y, Sabei FY. Method development and validation for simultaneous determination of Eletriptan hydrobromide and Itopride hydrochloride from fast dissolving buccal films by using RP-HPLC. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
One of the most effective, rapid, and simple methods reversed-phase high-performance liquid chromatography (RP-HPLC) was used for simultaneous development and validation of Eletriptan hydrobromide (ELE HBR) and Itopride hydrochloride (ITP HCL) in combination. The method was validated based on the regulations of United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) guidelines. Separation of both drugs was achieved within approximately 5 min by using a mobile phase made up of a 70:30 ratio of phosphate buffer and acetonitrile having a flow rate of 1 mL min−1. Furthermore, a comprehensive study was conducted on precision, accuracy, linearity, inter-day, intra-day studies, an assay of formulated films, and stability studies of combined prepared film. Co-efficient of correlation ranged between 0.9993, and 0.9965 for ELE HBR and ITP HCL respectively. The accuracy of the developed method was accurate as drug recoveries in both cases of ITP HCL, and ELE HBR falls between (99.87, 99.96, and 99.84%) to (99.81, 99.12, and 98.44%) respectively having a concentration range of solutions between 10, 30 and 50 μg mL−1 dilution. Films developed by using both drugs in combination were then validated for assay studies, and it was found that substantial results of 99.05%, and 99.87% were found in the case of ITP HCL and ELE HBR respectively. The stability of the solution and mobile phase showed the method's accuracy as the results were 97% for ITP HCL and 99% for ELE HBR. The proposed method developed for simultaneous determination of ITP HCL and ELE HBR was developed and validation and no interaction of any excipient were found.
Collapse
Affiliation(s)
- Waqar Siddique
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Department of Pharmacy, University of South Asia, Lahore, Pakistan
| | | | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Riffat Khan
- School of Pharmaceutical Sciences, Johar Institute of Professional Studies, Lahore, Pakistan
| | - Maria Gul
- School of Pharmaceutical Sciences, Johar Institute of Professional Studies, Lahore, Pakistan
| | - Farhan Asghar
- School of Pharmaceutical Sciences, Johar Institute of Professional Studies, Lahore, Pakistan
| | - Tangina Malik
- Department of Pharmacy, Akhtar Saeed Medical and Dental College Lahore, Pakistan
| | - Asiya Saif
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
9
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
10
|
Chitosan/guar gum-based thermoreversible hydrogels loaded with pullulan nanoparticles for enhanced nose-to-brain drug delivery. Int J Biol Macromol 2022; 215:579-595. [PMID: 35779651 DOI: 10.1016/j.ijbiomac.2022.06.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
The biopolymers-based two-fold system could provide a sustained release platform for drug delivery to the brain resisting the mucociliary clearance, enzymatic degradation, bypassing the first-pass hepatic metabolism, and BBB thus providing superior bioavailability through intranasal administration. In this study, poloxamers PF-127/PF-68 grafted chitosan HCl-co-guar gum-based thermoresponsive hydrogel loaded with eletriptan hydrobromide laden pullulan nanoparticles was synthesized and subjected to dynamic light scattering, Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction, scanning electron microscopy, stability studies, mucoadhesive strength and time, gel strength, cloud point assessment, rheological assessment, ex-vivo permeation, cell viability assay, histology studies, and in-vivo Pharmacokinetics studies, etc. It is quite evident that CSG-EH-NPs T-Hgel has an enhanced sustained release drug profile where approximately 86 % and 84 % of drug released in phosphate buffer saline and simulated nasal fluid respectively throughout 48 h compared to EH-NPs where 99.44 % and 97.53 % of the drug was released in PBS and SNF for 8 h. In-vivo PKa parameters i.e., mean residence time (MRT) of 11.9 ± 0.83 compared to EH-NPs MRT of 10.2 ± 0.92 and area under the curve (AUCtot) of 42,540.5 ± 5314.14 comparing to AUCtot of EH-NPs 38,026 ± 6343.1 also establish the superiority of CSG-EH-NPs T-Hgel.
Collapse
|
11
|
Histone Deacetylase Inhibitors Counteract CGRP Signaling and Pronociceptive Sensitization in a Rat Model of Medication Overuse Headache. THE JOURNAL OF PAIN 2022; 23:1874-1884. [PMID: 35700873 DOI: 10.1016/j.jpain.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Chronic triptan exposurein rodents recapitulates medication overuse headache (MOH), causing cephalic pain sensitization and trigeminal ganglion overexpression of pronociceptive proteins including CGRP. Because of these transcriptional derangements, as well as the emerging role of epigenetics in chronic pain, in the present study, we evaluated the effects of the histone deacetylase inhibitors (HDACis) panobinostat and givinostat, in rats chronically exposed to eletriptan for one month. Both panobinostat and givinostat counteracted overexpression of genes coding for CGRP and its receptor subunit RAMP1, having no effects on CLR and RCP receptor subunits in the trigeminal ganglion (TG) of eletriptan-exposed rats. Within the trigeminal nucleus caudalis (TNc), transcripts for these genes were neither upregulated by eletriptan nor altered by concomitant treatment with panobinostat or givinostat. HDACis counteracted hypersensitivity to capsaicin-induced vasodilatation in the trigeminal territory, as well as photophobic behavior and cephalic allodyniain eletriptan-exposed rats. Eletriptan did not affect CGRP, CLR, and RAMP1 expression in cultured trigeminal ganglia, whereas both inhibitors reduced transcripts for CLR and RAMP-1. The drugs, however, increased luciferase expression driven by CGRP promoter in cultured cells. Our findings provide evidence for a key role of HDACs and epigenetics in MOH pathogenesis, highlighting the therapeutic potential of HDAC inhibition in the prevention of migraine chronification.
Collapse
|
12
|
Vanillin containing 9H-fluoren sulfone scaffolds: Synthesis, biological evaluation and molecular docking study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Vélez-Jiménez MK, Chiquete-Anaya E, Orta DSJ, Villarreal-Careaga J, Amaya-Sánchez LE, Collado-Ortiz MÁ, Diaz-García ML, Gudiño-Castelazo M, Hernández-Aguilar J, Juárez-Jiménez H, León-Jiménez C, Loy-Gerala MDC, Marfil-Rivera A, Antonio Martínez-Gurrola M, Martínez-Mayorga AP, Munive-Báez L, Nuñez-Orozo L, Ojeda-Chavarría MH, Partida-Medina LR, Pérez-García JC, Quiñones-Aguilar S, Reyes-Álvarez MT, Rivera-Nava SC, Torres-Oliva B, Vargas-García RD, Vargas-Méndez R, Vega-Boada F, Vega-Gaxiola SB, Villegas-Peña H, Rodriguez-Leyva I. Comprehensive management of adults with chronic migraine: Clinical practice guidelines in Mexico. CEPHALALGIA REPORTS 2021. [DOI: 10.1177/25158163211033969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Migraine is a polygenic multifactorial disorder with a neuronal initiation of a cascade of neurochemical processes leading to incapacitating headaches. Headaches are generally unilateral, throbbing, 4–72 h in duration, and associated with nausea, vomiting, photophobia, and sonophobia. Chronic migraine (CM) is the presence of a headache at least 15 days per month for ≥3 months and has a high global impact on health and economy, and therapeutic guidelines are lacking. Methods: Using the Grading of Recommendations, Assessment, Development, and Evaluations system, we conducted a search in MEDLINE and Cochrane to investigate the current evidence and generate recommendations of clinical practice on the identification of risk factors and treatment of CM in adults. Results: We recommend avoiding overmedication of non-steroidal anti-inflammatory drugs (NSAIDs); ergotamine; caffeine; opioids; barbiturates; and initiating individualized prophylactic treatment with topiramate eptinezumab, galcanezumab, erenumab, fremanezumab, or botulinum toxin. We highlight the necessity of managing comorbidities initially. In the acute management, we recommend NSAIDs, triptans, lasmiditan, and gepants alone or with metoclopramide if nausea or vomiting. Non-pharmacological measures include neurostimulation. Conclusions: We have identified the risk factors and treatments available for the management of CM based on a grading system, which facilitates selection for individualized management.
Collapse
Affiliation(s)
| | - Erwin Chiquete-Anaya
- Department of Neurology and Psychiatry, National Institute of Medical Science and Nutrition “Salvador Zubirán”, Mexico City, México
| | - Daniel San Juan Orta
- Department of Clinical Research of the National Institute of Neurology and Neurosurgery “Dr. Manuel Velazco Suárez”, Mexico City, Mexico
| | | | - Luis Enrique Amaya-Sánchez
- Department of Neurology, Hospital de Especialidades del Centro Médico Nacional SXXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel Ángel Collado-Ortiz
- Staff physician of the hospital and the Neurological Center ABC (The American British Cowdray Hospital IAP, Mexico City, Mexico
| | | | | | - Juan Hernández-Aguilar
- Department of Neurology, Hospital Infantil de México. Federico Gómez, Mexico City, Mexico
| | | | - Carolina León-Jiménez
- Department of Neurology, ISSSTE Regional Hospital, “Dr. Valentin Gomez Farías”, Zapopan, Jalisco, Mexico
| | | | - Alejandro Marfil-Rivera
- Headache and Chronic Pain Clinic, Neurology Service, Hospital Univrsitario Autónoma de Nuevo Leon, Mexico City, Mexico
| | | | - Adriana Patricia Martínez-Mayorga
- Department of Neurology, Central Hospital “Dr. Ignacio Morones Prieto”, Faculty of Medicine, Universidad Autónoma de San Luis Potosi, SLP, Mexico City, Mexico
| | | | - Lilia Nuñez-Orozo
- Department of Neurology, National Medical Center 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | | | - Luis Roberto Partida-Medina
- Department of Neurology, Hospital de Especialidades, Centro Medico Nacional de Occidente, IMSS, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | | | | - Felipe Vega-Boada
- Department of Neurology and Psychiatry, National Institute of Medical Science and Nutrition “Salvador Zubirán”, Mexico City, México
| | | | - Hilda Villegas-Peña
- Department of Pediatric Neurology, Clínica de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ildefonso Rodriguez-Leyva
- Department of Neurology, Central Hospital “Dr. Ignacio Morones Prieto”, Faculty of Medicine, Universidad Autónoma de San Luis Potosi, SLP, Mexico City, Mexico
| |
Collapse
|
14
|
Meng JP, Li SQ, Tang Y, Xu ZG, Chen ZZ, Gao LX. Facile synthesis and biological evaluation of tryptamine-piperazine-2,5-dione conjugates as anticancer agents. RSC Adv 2021; 11:27767-27771. [PMID: 35480764 PMCID: PMC9037805 DOI: 10.1039/d1ra03740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
A facile and efficient route to synthesize N-heterocyclic fused tryptamine-piperazine-2,5-dione conjugates was developed via a post-Ugi cascade reaction. The targeted compounds were prepared by means of a mild reaction and simple operation procedure, which could be applied to a broad scope of starting materials. Compound 6h was demonstrated to induce significant growth inhibition of AsPC-1 and SW1990 human pancreatic cancer cell lines (IC50 = 6 ± 0.85 μM). Our protocol allows for the construction of a structurally diverse compound library and paves a new avenue for the discovery of pancreatic cancer drug candidates. A series of tryptamine-piperazine-2,5-dione conjugates derivatives was designed and synthesized via Ugi cascade reaction. The discovery of compound 6h may provide a new avenue for pancreatic cancer drug discovery.![]()
Collapse
Affiliation(s)
- Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shi-Qiang Li
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yan Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Li-Xia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
15
|
Bloomer ZW, Bauer EM, Hoang TD, Shakir MK. Eletriptan (Relpaxa™) Causing False Positive Elevations In Urinary Metanephrines. AACE Clin Case Rep 2020; 6:e286-e289. [DOI: 10.4158/accr-2020-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/01/2020] [Indexed: 11/15/2022] Open
|
16
|
Reznikov AN, Sibiryakova AE, Baimuratov MR, Golovin EV, Rybakov VB, Klimochkin YN. Synthesis of non-racemic 4-nitro-2-sulfonylbutan-1-ones via Ni(II)-catalyzed asymmetric Michael reaction of β-ketosulfones. Beilstein J Org Chem 2019; 15:1289-1297. [PMID: 31293677 PMCID: PMC6604683 DOI: 10.3762/bjoc.15.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Functionally substituted sulfones with stereogenic centers are valuable reagents in organic synthesis and key motifs in some bioactive compounds. The asymmetric Michael addition of β-ketosulfones to conjugated nitroalkenes in the presence of Ni(II) complexes with various chiral vicinal diamines was studied. This reaction provides convenient access to non-racemic 4-nitro-2-sulfonylbutan-1-ones with two stereocenters with high yield and excellent enantioselectivity (up to 99%). It has been established that the catalytic Michael reaction itself was carried out with high diastereoselectivity, but the Michael adducts may epimerize at the C-2 position at a significant rate. Conditions for the preparation of individual diastereomers were found.
Collapse
Affiliation(s)
- Alexander N Reznikov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Anastasiya E Sibiryakova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Marat R Baimuratov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Eugene V Golovin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, Moscow State University, Leninskie Gory, 1, 119991, Mosсow, Russian Federation
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| |
Collapse
|
17
|
Moreno‐Ajona D, Chan C, Villar‐Martínez MD, Goadsby PJ. Targeting CGRP and 5‐HT
1F
Receptors for the Acute Therapy of Migraine: A Literature Review. Headache 2019; 59 Suppl 2:3-19. [DOI: 10.1111/head.13582] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- David Moreno‐Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Calvin Chan
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - María Dolores Villar‐Martínez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Peter J. Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| |
Collapse
|
18
|
Ertugrul B, Kilic H, Lafzi F, Saracoglu N. Access to C5-Alkylated Indolines/Indoles via Michael-Type Friedel-Crafts Alkylation Using Aryl-Nitroolefins. J Org Chem 2018; 83:9018-9038. [PMID: 29916712 DOI: 10.1021/acs.joc.8b00973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A straightforward synthetic route toward C5-alkylated indolines/indoles has been developed. The strategy is composed of Zn(OTf)2-catalyzed Friedel-Crafts alkylation of N-benzylindolines with nitroolefins, and a series of diverse indolines was first obtained in up to 99% yield. This reaction provides a direct and practical route to a variety of the C5-alkylated indolines which were also utilized for accessing corresponding indoles. Indoline derivatives with free NH groups could be obtained through an N-deprotection reaction. Moreover, the primary alkyl nitro groups in both indolines and indoles are amenable to further synthetic elaborations, thereby broadening the diversity of the products.
Collapse
|
19
|
González-Hernández A, Marichal-Cancino BA, MaassenVanDenBrink A, Villalón CM. Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opin Drug Metab Toxicol 2018; 14:25-41. [PMID: 29226741 DOI: 10.1080/17425255.2018.1416097] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Migraine is a neurovascular disorder. Current acute specific antimigraine pharmacotherapies target trigeminovascular 5-HT1B/1D, 5-HT1F and CGRP receptors but, unfortunately, they induce some cardiovascular and central side effects that lead to poor treatment adherence/compliance. Therefore, new antimigraine drugs are being explored. Areas covered: This review considers the adverse (or potential) side effects produced by current and prospective antimigraine drugs, including medication overuse headache (MOH) produced by ergots and triptans, the side effects observed in clinical trials for the new gepants and CGRP antibodies, and a section discussing the potential effects resulting from disruption of the cardiovascular CGRPergic neurotransmission. Expert opinion: The last decades have witnessed remarkable developments in antimigraine therapy, which includes acute (e.g. triptans) and prophylactic (e.g. β-adrenoceptor blockers) antimigraine drugs. Indeed, the triptans represent a considerable advance, but their side effects (including nausea, dizziness and coronary vasoconstriction) preclude some patients from using triptans. This has led to the development of the ditans (5-HT1F receptor agonists), the gepants (CGRP receptor antagonists) and the monoclonal antibodies against CGRP or its receptor. The latter drugs represent a new hope in the antimigraine armamentarium, but as CGRP plays a role in cardiovascular homeostasis, the potential for adverse cardiovascular side effects remains latent.
Collapse
Affiliation(s)
| | - Bruno A Marichal-Cancino
- b Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes , Ciudad Universitaria , Aguascalientes , México
| | - Antoinette MaassenVanDenBrink
- c Division of Vascular Medicine and Pharmacology, Department of Internal Medicine , Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Carlos M Villalón
- d Departamento de Farmacobiología , Cinvestav-Coapa , Ciudad de México , México
| |
Collapse
|
20
|
Affiliation(s)
- Paolo Martelletti
- a Department of Clinical and Molecular Medicine , Sapienza University , Rome , Italy
| |
Collapse
|
21
|
Abstract
What are the advantages of bioactivation in optimizing drugs and pesticides? Why are there so many prodrugs and propesticides? These questions are examined here by considering compounds selected on the basis of economic value or market success in 2015. The 100 major drugs and 90 major pesticides are divided into ones acting directly and those definitely or possibly requiring bioactivation. Established or candidate prodrugs accounted for 19% of the total drug sales, with corresponding values of 20, 37, and 17% for proinsecticides, proherbicides, and profungicides. The 19 prodrugs acting in humans generally had better pharmacodynamic/pharmacokinetic properties for target enzyme, receptor, tissue, or organ specificity due to their physical properties (lipophilicity and stabilization). Bioactivation usually involved hydrolases or cytochrome P450 oxidation or reduction. Prodrugs considered are neuroactive aripiprazole, eletriptan, desvenlafaxin, lisdexamfetamine, quetiapine, and fesoterodine; cholesterol-lowering atorvastatin, ezetimibe, and fenofibrate; various prodrugs activated by esterases or sulfatases, ciclesonide, oseltamivir, dabigatran; omega-3 fatty acid ethyl esters and esterone sulfate; and five others with various targets (sofosbuvir, fingolimod, clopidogrel, dapsone, and sildenafil). The proinsecticides are the neuroactive chlorpyrifos, thiamethoxam, and indoxacarb, two spiro enol ester inhibitors of acetyl CoA carboxylase (ACCase), and the bacterial protein delta-endotoxin. The proherbicides considered are five ACCase inhibitors including pinoxaden and clethodim, three protox inhibitors (saflufenacil, flumioxazin, and canfentrazone-ethyl), and three with various targets (fluroxypyr, isoxaflutole, and clomazone). The profungicides are prothioconazole, mancozeb, thiophanate-methyl, dazomet, and fosetyl-aluminum. The prodrug and propesticide concept is broadly applicable and has created some of the most selective pharmaceutical and pest control agents, illustrated here by major compounds that partially overcome pharmacokinetic limitations of potency and selectivity in the corresponding direct-acting compounds. The challenges of molecular design extend beyond the target site fit to the bioactivatable precursor and the fascinating chemistry and biology matched against the complexity of life processes.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California , Berkeley, California 94720, United States
| |
Collapse
|
22
|
Xu H, Han W, Wang J, Li M. Network meta-analysis of migraine disorder treatment by NSAIDs and triptans. J Headache Pain 2016; 17:113. [PMID: 27957624 PMCID: PMC5153398 DOI: 10.1186/s10194-016-0703-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Migraine is a neurological disorder resulting in large socioeconomic burden. This network meta-analysis (NMA) is designed to compare the relative efficacy and tolerability of non-steroidal anti-inflammatory agents (NSAIDs) and triptans. Methods We conducted systematic searches in database PubMed and Embase. Treatment effectiveness was compared by synthesizing direct and indirect evidences using NMA. The surface under curve ranking area (SUCRA) was created to rank those interventions. Results Eletriptan and rizatriptan are superior to sumatriptan, zolmitriptan, almotriptan, ibuprofen and aspirin with respect to pain-relief. When analyzing 2 h-nausea-absence, rizatriptan has a better efficacy than sumatriptan, while other treatments indicate no distinctive difference compared with placebo. Furthermore, sumatriptan demonstrates a higher incidence of all-adverse-event compared with diclofenac-potassium, ibuprofen and almotriptan. Conclusion This study suggests that eletriptan may be the most suitable therapy for migraine from a comprehensive point of view. In the meantime ibuprofen may also be a good choice for its excellent tolerability. Multi-component medication also attracts attention and may be a promising avenue for the next generation of migraine treatment. Electronic supplementary material The online version of this article (doi:10.1186/s10194-016-0703-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiyang Xu
- The First hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Wei Han
- The First hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Jinghua Wang
- The First hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingxian Li
- The First hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|