1
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Lee CY, Chan KH. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024; 16:120. [PMID: 38258130 PMCID: PMC10820407 DOI: 10.3390/pharmaceutics16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis is an important neurological disease affecting millions of young patients globally. It is encouraging that more than ten disease-modifying drugs became available for use in the past two decades. These disease-modifying therapies (DMTs) have different levels of efficacy, routes of administration, adverse effect profiles and concerns for pregnancy. Much knowledge and caution are needed for their appropriate use in MS patients who are heterogeneous in clinical features and severity, lesion load on magnetic resonance imaging and response to DMT. We aim for an updated review of the concept of personalization in the use of DMT for relapsing MS patients. Shared decision making with consideration for the preference and expectation of patients who understand the potential efficacy/benefits and risks of DMT is advocated.
Collapse
Affiliation(s)
- Chi-Yan Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Carlomagno V, Mirabella M, Lucchini M. Current Status of Oral Disease-Modifying Treatment Effects on Cognitive Outcomes in Multiple Sclerosis: A Scoping Review. Bioengineering (Basel) 2023; 10:848. [PMID: 37508875 PMCID: PMC10376579 DOI: 10.3390/bioengineering10070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Cognitive impairment represents one of the most hidden and disabling clinical aspects of multiple sclerosis (MS). In this regard, the major challenges are represented by the need for a comprehensive and standardised cognitive evaluation of each patient, both at disease onset and during follow-up, and by the lack of clear-cut data on the effects of treatments. In the present review, we summarize the current evidence on the effects of the available oral disease-modifying treatments (DMTs) on cognitive outcome measures. MATERIALS AND METHODS In this systematised review, we extract all the studies that reported longitudinally acquired cognitive outcome data on oral DMTs in MS patients. RESULTS We found 29 studies that evaluated at least one oral DMT, including observational studies, randomised controlled trials, and their extension studies. Most of the studies (n = 20) evaluated sphingosine-1-phosphate (S1P) modulators, while we found seven studies on dimethyl fumarate, six on teriflunomide, and one on cladribine. The most frequently used cognitive outcome measures were SDMT and PASAT. Most of the studies reported substantial stability or mild improvement in cognitive outcomes in a short-time follow-up (duration of most studies ≤2 years). A few studies also reported MRI measures of brain atrophy. CONCLUSION Cognitive outcomes were evaluated only in a minority of prospective studies on oral DMTs in MS patients with variable findings. More solid and numerous data are present for the S1P modulators. A standardised cognitive evaluation remains a yet unmet need to better clarify the possible positive effect of oral DMTs on cognition.
Collapse
Affiliation(s)
- Vincenzo Carlomagno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| |
Collapse
|
4
|
Jakimovski D, Weinstock-Guttman B, Zivadinov R. Ublituximab-xiiy as a treatment option for relapsing multiple sclerosis. Expert Rev Neurother 2023; 23:1053-1061. [PMID: 37842819 DOI: 10.1080/14737175.2023.2268842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION B cell depletion has been established as an efficacious anti-inflammatory therapy in people with relapsing forms of multiple sclerosis (MS). Ublituximab (ublituximab-xiiy) is the latest approved chimeric glycoengineered anti-CD20 monoclonal antibody (mAb) for the treatment of relapsing forms of MS. AREAS COVERED In this narrative review, the authors explore the safety and effectiveness of data derived from the Phase 2 and Phase 3 ublituximab trials and from their respective post-hoc analyses. Moreover, they consider the similarities and differences between the currently available anti-CD20 antibodies for treatment of relapsing MS. Lastly, the authors discuss the role and place of ublituximab in the current disease modifying therapy landscape. EXPERT OPINION Ublituximab is a rapid-acting and effective anti-inflammatory option as a treatment in people with relapsing MS that significantly reduced the annualized relapse rate and MRI-based disease activity. When compared to the Phase III trials of the other two anti-CD20 mAbs (ocrelizumab and ofatumumab), ublituximab did not result with reduction of 3 or 6-month confirmed disability progression. These differences may be attributed to the overall low rate of progression in both the ublituximab and the active comparator teriflunomide arm. Future data from open-label extensions are warranted. There was no significant reduction of ublituximab on whole-brain atrophy compared to teriflunomide.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Pennington P, Weinstock-Guttman B, Kolb C, Jakimovski D, Sacca K, Benedict RHB, Eckert S, Stecker M, Lizarraga A, Dwyer MG, Schumacher CB, Bergsland N, Picco P, Bernitsas E, Zabad R, Pardo G, Negroski D, Belkin M, Hojnacki D, Zivadinov R. Communicating the relevance of neurodegeneration and brain atrophy to multiple sclerosis patients: patient, provider and researcher perspectives. J Neurol 2023; 270:1095-1119. [PMID: 36376729 DOI: 10.1007/s00415-022-11405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Central nervous system (CNS) atrophy provides valuable additional evidence of an ongoing neurodegeneration independent of lesion accrual in persons with multiple sclerosis (PwMS). However, there are limitations for interpretation of CNS volume changes at individual patient-level. Patients are receiving information on the topic of atrophy through various sources, including media, patient support groups and conferences, and discussions with their providers. Whether or not the topic of CNS atrophy should be proactively discussed with PwMS during office appointments is currently controversial. This commentary/perspective article represents perspectives of PwMS, providers and researchers with recommendations for minimizing confusion and anxiety, and facilitating proactive discussion about brain atrophy, as an upcoming routine measure in evaluating disease progression and treatment response monitoring. The following recommendations were created based on application of patient's and provider's surveys, and various workshops held over a period of 2 years: (1) PwMS should receive basic information on understanding of brain functional anatomy, and explanation of inflammation and neurodegeneration; (2) the expertise for atrophy measurements should be characterized as evolving; (3) quality patient education materials on these topics should be provided; (4) the need for standardization of MRI exams has to be explained and communicated; (5) providers should discuss background on volumetric changes, including references to normal aging; (6) the limitations of brain volume assessments at an individual-level should be explained; (7) the timing and language used to convey this information should be individualized based on the patient's background and disease status; (8) a discussion guide may be a very helpful resource for use by providers/staff to support these discussions; (9) understanding the role of brain atrophy and other MRI metrics may elicit greater patient satisfaction and acceptance of the value of therapies that have proven efficacy around these outcomes; (10) the areas that represent possibilities for positive self-management of MS symptoms that foster hope for improvement should be emphasized, and in particular regarding use of physical and mental exercise that build or maintain brain reserve through increased network efficiency, and (11) an additional time during clinical visits should be allotted to discuss these topics, including creation of specific educational programs.
Collapse
Affiliation(s)
- Penny Pennington
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Channa Kolb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Katherine Sacca
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Svetlana Eckert
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Marc Stecker
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Alexis Lizarraga
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Carol B Schumacher
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Patricia Picco
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | | | - Rana Zabad
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabriel Pardo
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Martin Belkin
- Michigan Institute for Neurological Disorders (MIND), Farmington Hills, MI, USA
| | - David Hojnacki
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA. .,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
6
|
Dardiotis E, Perpati G, Borsos M, Nikolaidis I, Tzanetakos D, Deretzi G, Koutlas E, Kilidireas C, Mitsikostas DD, Hadjigeorgiou G, Grigoriadis N. Real-World Assessment of Quality of Life in Patients with Relapsing Remitting Multiple Sclerosis Treated with Teriflunomide for Two Years: Patient-Reported Outcomes from the AURELIO Study in Greece. Neurol Ther 2022; 11:1375-1390. [PMID: 35829919 PMCID: PMC9338205 DOI: 10.1007/s40120-022-00384-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a highly heterogeneous inflammatory disease of the central nervous system. Patient-reported outcomes (PROs) in a real-world clinical setting can provide detailed information about MS from the patient's perspective. PROs were used here to assess quality of life (QoL), treatment satisfaction, clinical efficacy, and safety outcomes in a Greek cohort of relapsing remitting MS (RRMS) patients treated with oral teriflunomide (14 mg/day). METHODS AURELIO was a 2-year, prospective, observational study whose QoL primary endpoint was assessed with the Multiple Sclerosis Impact Scale (MSIS-29). Secondary endpoints included analyses of Patient Determined Disease Steps (PDDS), Treatment Satisfaction Questionnaire for Medication (TSQM), Expanded Disability Status Scale (EDSS), annualized relapse rate (ARR), adherence, and safety outcomes. RESULTS AURELIO enrolled 282 patients (62.8% female; mean age 44.8 [SD ± 11] years; EDSS 2.0 [SD ± 1.6]; 44.6% treatment-naïve), with 212 patients (75%) remaining on treatment at study end. MSIS-29 total scores remained stable, while the MSIS-29 psychological scale showed significant improvement (p = 0.0015) at 2 years vs. baseline. TSQM scores at 2 years showed significant improvements in effectiveness (+ 6.6, p = 0.0001), convenience (+ 1.9, p = 0.0256), and global satisfaction (+ 8.1, p = 0.0001) vs. baseline. Disease progression was stable as indicated by non-significant changes in PDDS and EDSS vs. baseline. The ARR was low at 0.065, with a slightly higher ARR in previously treated (0.070) vs. naïve patients (0.058). Adherence was high at > 90%. Overall, 91 patients (32.3%) in the study reported a total of 215 safety events (32 serious, of which 21 were classified as mild-moderate). No new safety signals were observed. CONCLUSIONS These data highlight the importance of PROs to facilitate personalized treatment strategies in MS. In line with other teriflunomide studies, AURELIO showed stable QoL, efficacy and safety outcomes, and good treatment satisfaction both in treatment-naïve and previously treated patients in this Greek cohort of patients with RRMS.
Collapse
Affiliation(s)
- Efthymios Dardiotis
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | | | - Mariann Borsos
- AdWare Research Development and Consulting Ltd, Balatonfüred, Hungary
| | - Ioannis Nikolaidis
- 2nd Neurology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tzanetakos
- 1st Neurology Department, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Deretzi
- Neurology Clinic, Papageorgiou Hospital, Thessaloniki, Greece
| | | | - Constantinos Kilidireas
- 1st Neurology Department, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos Dimitrios Mitsikostas
- 1st Neurology Department, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Nikolaos Grigoriadis
- 2nd Neurology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
7
|
Florian IA, Lupan I, Sur L, Samasca G, Timiș TL. To be, or not to be… Guillain-Barré Syndrome. Autoimmun Rev 2021; 20:102983. [PMID: 34043803 DOI: 10.1016/j.autrev.2021.102983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
Guillain-Barré Syndrome (GBS) is currently the most frequent cause of acute flaccid paralysis on a global scale, being an autoimmune disorder wherein demyelination of the peripheral nerves occurs. Its main clinical features are a symmetrical ascending muscle weakness with reduced osteotendinous reflexes and variable sensory involvement. GBS most commonly occurs after an infection, especially viral (including COVID-19), but may also transpire after immunization with certain vaccines or in the development of specific malignancies. Immunoglobulins, plasmapheresis, and glucocorticoids represent the principal treatment modalities, however patients with severe disease progression may require supportive therapy in an intensive care unit. Due to its symptomology, which overlaps with numerous neurological and infectious illnesses, the diagnosis of GBS may often be misattributed to pathologies that are essentially different from this syndrome. Moreover, many of these require specific treatment methods distinct to those recommended for GBS, in lack of which the prognosis of the patient is drastically affected. Such diseases include exposure to toxins either environmental or foodborne, central nervous system infections, metabolic or serum ion alterations, demyelinating pathologies, or even conditions amenable to neurosurgical intervention. This extensive narrative review aims to systematically and comprehensively tackle the most notable and challenging differential diagnoses of GBS, emphasizing on the clinical discrepancies between the diseases, the appropriate paraclinical investigations, and suitable management indications.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Department of Neurology, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania, Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Iulia Lupan
- Department of Molecular Biology, Babes Bolyai University, Cluj-Napoca, Romania.
| | - Lucia Sur
- Department of Pediatrics I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Teodora Larisa Timiș
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Miller AE. An updated review of teriflunomide's use in multiple sclerosis. Neurodegener Dis Manag 2021; 11:387-409. [PMID: 34486382 DOI: 10.2217/nmt-2021-0014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Teriflunomide, a once daily, oral disease-modifying therapy, has demonstrated consistent efficacy, safety and tolerability in patients with relapsing forms of multiple sclerosis (MS) and with a first clinical episode suggestive of MS treated up to 12 years. This review is an update to a previous version that examined data from the teriflunomide core clinical development program and extension studies. Data have since become available from active comparator trials with other disease-modifying therapies, treatment-related changes in brain volume (analyzed using structural image evaluation using normalization of atrophy) and real-world evidence including patient-reported outcomes. Initial data on the potential antiviral effects of teriflunomide in patients with MS, including case reports of patients infected with the 2019 novel coronavirus (SARS-CoV-2), are also presented.
Collapse
Affiliation(s)
- Aaron E Miller
- Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|