1
|
Hsu PC, Chang JWC, Chiu LC, Yang CT, Kuo SCH, Fang YF, Wu CE. Analysis of genomic alternations in epidermal growth factor receptor (EGFR)-T790M-mutated non-small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03727-7. [PMID: 39317868 DOI: 10.1007/s12094-024-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Genomic alterations after resistance to osimertinib therapy in advanced T790M-mutated non-small cell lung cancer (NSCLC) are complex and poorly understood. In this study, we aimed to detect these genomic alternations via comprehensive next-generation sequencing (NGS) of tissue and liquid biopsies. PATIENTS AND METHODS From September 2020 to June 2021, 31 stage IIIB/IV T790M-mutated NSCLC patients who exhibited progressive disease after osimertinib therapy and provided written informed consent were recruited. Liquid and tissue biopsy samples for NGS testing were collected from 31 and 18 patients, respectively. Eighteen study patients had paired NGS data from tissue and liquid biopsies. RESULTS With respect to the T790M mutation status, the preservation and loss rates were 33% and 67%, respectively, in both liquid and tissue biopsy samples. Five patients (16.1%) had the C797S mutation (4 liquid samples and 1 tissue sample). Two (6.5%) had MET mutations, 3 (9.7%) had BRAF-V600E mutations, and 1 (3.2%) had a KRAS-G12C mutation. Among the 18 patients who underwent tissue rebiopsies, those with preserved T790M mutation had significantly longer progression-free survival (PFS) with osimertinib therapy than those with T790M mutation loss (10.8 vs. 5.0 months, P = 0.045). Among all patients, those with T790M mutation loss in liquid biopsy samples had longer PFS after osimertinib therapy (10.8 vs. 7.5 months, P = 0.209) and postprogression survival (17.7 vs. 9.6 months, P = 0.132) than those with preserved T790M mutation based on liquid biopsies. CONCLUSIONS NGS using either tissue or liquid biopsy samples from advanced T790M-mutated NSCLC patients with acquired resistance to osimertinib therapy can detect various genomic alternations. Future studies focusing on subsequent tailored therapies on the basis of NGS results are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - John Wen-Cheng Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan
| | - Li-Chung Chiu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan, 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chiao-En Wu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan.
| |
Collapse
|
2
|
Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, Xu H, Cao Z, Feng X, Xue Q, Wang Y, Sun N, He J. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond) 2022; 42:828-847. [PMID: 35811500 PMCID: PMC9456691 DOI: 10.1002/cac2.12327] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) and its ligand PD-L1 have demonstrated potency towards treating patients with non-small cell lung carcinoma (NSCLC), the potential association between Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene substitutions and the efficacy of ICIs remains unclear. In this study, we aimed to find point mutations in the KRAS gene resistant to ICIs and elucidate resistance mechanism. METHODS The association between KRAS variant status and the efficacy of ICIs was explored with a clinical cohort (n = 74), and confirmed with a mouse model. In addition, the tumor immune microenvironment (TIME) of KRAS-mutant NSCLC, such as CD8+ tumor-infiltrating lymphocytes (TILs) and PD-L1 level, was investigated. Cell lines expressing classic KRAS substitutions were used to explore signaling pathway activation involved in the formation of TIME. Furthermore, interventions that improved TIME were developed to increase responsiveness to ICIs. RESULTS We observed the inferior efficacy of ICIs in KRAS-G12D-mutant NSCLC. Based upon transcriptome data and immunostaining results from KRAS-mutant NSCLC, KRAS-G12D point mutation negatively correlated with PD-L1 level and secretion of chemokines CXCL10/CXCL11 that led to a decrease in CD8+ TILs, which in turn yielded an immunosuppressive TIME. The analysis of cell lines overexpressing classic KRAS substitutions further revealed that KRAS-G12D mutation suppressed PD-L1 level via the P70S6K/PI3K/AKT axis and reduced CXCL10/CXCL11 levels by down-regulating high mobility group protein A2 (HMGA2) level. Notably, paclitaxel, a chemotherapeutic agent, upregulated HMGA2 level, and in turn, stimulated the secretion of CXCL10/CXCL11. Moreover, PD-L1 blockade combined with paclitaxel significantly suppressed tumor growth compared with PD-L1 inhibitor monotherapy in a mouse model with KRAS-G12D-mutant lung adenocarcinoma. Further analyses revealed that the combined treatment significantly enhanced the recruitment of CD8+ TILs via the up-regulation of CXCL10/CXCL11 levels. Results of clinical study also revealed the superior efficacy of chemo-immunotherapy in patients with KRAS-G12D-mutant NSCLC compared with ICI monotherapy. CONCLUSIONS Our study elucidated the molecular mechanism by which KRAS-G12D mutation drives immunosuppression and enhances resistance of ICIs in NSCLC. Importantly, our findings demonstrate that ICIs in combination with chemotherapy may be more effective in patients with KRAS-G12D-mutant NSCLC.
Collapse
Affiliation(s)
- Chengming Liu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Sufei Zheng
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zhanyu Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Sihui Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xinfeng Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Lu Yang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Haiyan Xu
- Department of Comprehensive OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zheng Cao
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaoli Feng
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yan Wang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Nan Sun
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jie He
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
3
|
Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer. BMC Med 2022; 20:187. [PMID: 35550592 PMCID: PMC9102328 DOI: 10.1186/s12916-022-02356-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cytokines have been reported to alter the response to immune checkpoint inhibitors (ICIs) in patients with the tumor in accordance with their plasma concentrations. Here, we aimed to identify the key cytokines which influenced the responses and stimulated resistance to ICIs and tried to improve immunological response and develop novel clinical treatments in non-small cell lung cancer (NSCLC). METHODS The promising predictive cytokines were analyzed via the multi-analyte flow assay. Next, we explored the correlation baseline level of plasma cytokines and clinical outcomes in 45 NSCLC patients treated with ICIs. The mechanism of the potential candidate cytokine in predicting response and inducing resistance to ICIs was then investigated. RESULTS We found NSCLC with a low baseline concentration of IL-6 in plasma specimens or tumor tissues could derive more benefit from ICIs based on the patient cohort. Further analyses revealed that a favorable relationship between PD-L1 and IL-6 expression was seen in NSCLC specimens. Results in vitro showed that PD-L1 expression in the tumor was enhanced by IL-6 via the JAK1/Stat3 pathway, which induced immune evasion. Notably, an adverse correlation was found between IL-6 levels and CD8+ T cells. And a positive association between IL-6 levels and myeloid-derived suppressor cells, M2 macrophages and regulator T cells was also seen in tumor samples, which may result in an inferior response to ICIs. Results of murine models of NSCLC suggested that the dual blockade of IL-6 and PD-L1 attenuated tumor growth. Further analyses detected that the inhibitor of IL-6 stimulated the infiltration of CD8+ T cells and yielded the inflammatory phenotype. CONCLUSIONS This study elucidated the role of baseline IL-6 levels in predicting the responses and promoting resistance to immunotherapy in patients with NSCLC. Our results indicated that the treatment targeting IL-6 may be beneficial for ICIs in NSCLC.
Collapse
|
4
|
Liu C, Wang S, Zheng S, Xu F, Cao Z, Feng X, Wang Y, Xue Q, Sun N, He J. Avoiding Absolute Quantification Trap: A Novel Predictive Signature of Clinical Benefit to Anti-PD-1 Immunotherapy in Non-Small Cell Lung Cancer. Front Immunol 2021; 12:782106. [PMID: 34868057 PMCID: PMC8640493 DOI: 10.3389/fimmu.2021.782106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has been focused on by many oncologists and researchers. While, due to technical biases of absolute quantification, few traditional biomarkers for anti-PD-1 immunotherapy have been applied in regular clinical practice of non-small cell lung cancer (NSCLC). Therefore, there is an urgent and unmet need for a feasible tool—immune to data source bias—for identifying patients who might benefit from ICIs in clinical practice. Using the strategy based on the relative ranking of gene expression levels, we herein proposed the novel BRGP index (BRGPI): four BRGPs significantly related with progression-free survival of NSCLC patients treated with anti-PD-1 immunotherapy in the multicohort analysis. Moreover, stratification and multivariate Cox regression analyses demonstrated that BRGPI was an independent prognostic factor. Notably, compared to PD-L1, BRGPI exerted the best predictive ability. Further analysis showed that the patients in the BRGPI-low and PD-L1-high subgroup derived more clinical benefits from anti-PD-1 immunotherapy. In conclusion, the prospect of applying the BRGPI to real clinical practice is promising owing to its powerful and reliable predictive value.
Collapse
Affiliation(s)
- Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sihui Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|