1
|
Leggat-Barr K, Yee D, Duralde E, Hodge C, Borges V, Baxter M, Valdez J, Morgan T, Garber J, Esserman L. A roadmap to reduce the incidence and mortality of breast cancer by rethinking our approach to women's health. Breast Cancer Res Treat 2024:10.1007/s10549-024-07522-4. [PMID: 39531132 DOI: 10.1007/s10549-024-07522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Despite progress, breast cancer remains the most feared disease among women. In the USA alone, the incidence is now almost 300,000 new cancers per year, a rate that has nearly doubled in the last 30 years. Most women survive, but over 40,000 women a year still die of their disease National Cancer Institute [Internet]. [cited 2024 Nov 4]. Cancer of the Breast (Female) - Cancer Stat Facts. Available from: https://seer.cancer.gov/statfacts/html/breast.html. It is the most diagnosed cancer among women and the second leading cause of cancer death. Important disparities exist in breast cancer outcomes among African American women, where women die of breast cancer at higher rates, are diagnosed younger, and at a more advanced stage. We are proposing a radical shift in our thinking about breast cancer prevention with an aspiration to dramatically lower breast cancer incidence. Most breast cancers are driven by steroid hormones. Throughout the life course, women are offered an array of hormonal treatments for menstrual cycle control, family planning, in vitro fertilization, postpartum weaning, and menopausal symptom management. There are mixed data on the extent to which each of these may contribute to increased or decreased risk for breast cancer. These endocrine manipulations could represent a great opportunity to potentially reduce breast cancer incidence and improve quality of life for survivors. To date, they have not been designed to explicitly reduce breast cancer risk. A new holistic approach will require scientists, drug developers, breast oncologists, obstetricians, gynecologists, endocrinologists, radiologists, and family medicine/internists to work together toward the common goal of reducing breast cancer risk while addressing other critical issues in women's health.
Collapse
Affiliation(s)
| | - Douglas Yee
- Masonic Cancer Center Minneapolis, University of Minnesota, Minneapolis, MN, USA
| | | | - Caroline Hodge
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Virginia Borges
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Molly Baxter
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jessica Valdez
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tamandra Morgan
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Judy Garber
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Alfred A de Lorimier Endowed Chair in General Surgery, 1825 4th St, 3rd Floor, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Wu H, Jin M, Liu Y, Wang S, Liu C, Quan X, Jin M, Gao Z, Jin Y. A self-targeting MOFs nanoplatform for treating metastatic triple-negative breast cancer through tumor microenvironment remodeling and chemotherapy potentiation. Int J Pharm 2024; 664:124625. [PMID: 39182743 DOI: 10.1016/j.ijpharm.2024.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer with disappointing treatment and high mortality. Tumor microenvironment (TME) plays an important role in the invasion and metastasis of TNBC through multiple complex processes. Most anti-metastatic therapies only focus on cancer cells themselves or interfering with single factors of the metastasis process, which is often related to poor outcomes. Thus, effective TNBC treatment relies on regulating multiple key metastasis-related aspects of the TME. Herein, a self-targeting Metal-Organic Frameworks (MOFs) nanoplatform (named as MTX-PEG@TPL@ZIF-8) was designed to improve treatment of TNBC through tumor microenvironment remodeling and chemotherapy potentiation. The self-targeting MOF nanoplatform is consist of ZIF-8 nanoparticles loaded triptolide (TPL) and followed by the coating with methotrexate-polyethylene glycol conjugates (MTX-PEG). Due to MTX's affinity for the overexpressed folate receptor on tumor cell surfaces, MTX-PEG@TPL@ZIF-8 enables effective accumulation and deep penetration in the tumor area by an MTX-mediated self-targeting strategy. This MOF nanoplatform could promptly release the medication after penetrating the tumor cell, due to pH-triggered degradation. Its anti-metastasis mechanism is to inhibit tumor invasion and metastasis by down-regulating the expression of Vimentin, MMP-2 and MMP-9 and increasing the expression of E-cadherin, upregulation of cleaved caspase-3 and cleaved caspase-9 protein expression promote the apoptosis of tumor cells, thereby reducing their migration. It also downregulated the expression of VEGF and CD31 protein to inhibit the generation of neovascularization. Overall, these findings suggest the self-targeting MOF nanoplatform offers new insights into the treatment of metastatic TNBC by TME remodeling and potentiating chemotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Jin
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuquan Quan
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
3
|
Merloni F, Palleschi M, Gianni C, Sirico M, Serra R, Casadei C, Sarti S, Cecconetto L, Di Menna G, Mariotti M, Maltoni R, Montanari D, Romeo A, De Giorgi U. Local treatment for oligoprogressive metastatic sites of breast cancer: efficacy, toxicities and future perspectives. Clin Exp Metastasis 2024:10.1007/s10585-024-10312-3. [PMID: 39312051 DOI: 10.1007/s10585-024-10312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Metastatic breast cancer (MBC) is still an incurable disease, which eventually develops resistance mechanisms against systemic therapies. While most patients experience widespread disease progression during systemic treatment (ST), in some cases, progression may occur at a limited number of metastatic sites. Evidence from other malignancies suggests that local treatment with stereotactic ablative radiotherapy (SABR) of oligoprogressive disease (OPD) may allow effective disease control without the need to modify ST. Available evidence regarding local treatment of oligoprogressive breast cancer is limited, mostly consisting of retrospective studies. The only randomized data come from the randomized CURB trial, which enrolled patients with oligoprogressive disease, including both small cell lung cancer and breast cancer patients, and did not show a survival benefit from local treatment in the latter group. However, local treatment of oligoprogressive MBC is still considered in clinical practice, especially to delay the switch to more toxic STs. This review aims to identify patients who may benefit from this approach based on the current available knowledge, focusing also on the potential risks associated with the combination of radiotherapy (RT) and ST, as well as on possible future scenarios.
Collapse
Affiliation(s)
- Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy.
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Riccardo Serra
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Roberta Maltoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Daniela Montanari
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Antonino Romeo
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P.Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
4
|
Leone GM, Mangano K, Caponnetto S, Fagone P, Nicoletti F. Identification of Poliovirus Receptor-like 3 Protein as a Prognostic Factor in Triple-Negative Breast Cancer. Cells 2024; 13:1299. [PMID: 39120328 PMCID: PMC11312209 DOI: 10.3390/cells13151299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, with a bad prognosis and lack of targeted therapeutic options. Characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, TNBC is often associated with a significantly lower survival rate compared to other breast cancer subtypes. Our study aimed to explore the prognostic significance of 83 immune-related genes, by using transcriptomic data from the TCGA database. Our analysis identified the Poliovirus Receptor-Like 3 protein (PVRL3) as a critical negative prognostic marker in TNBC patients. Furthermore, we found that the Enhancer of Zeste Homolog 2 (EZH2), a well-known epigenetic regulator, plays a pivotal role in modulating PVRL3 levels in TNBC cancer cell lines expressing EZH2 along with high levels of PVRL3. The elucidation of the EZH2-PVRL3 regulatory axis provides valuable insights into the molecular mechanisms underlying TNBC aggressiveness and opens up potential pathways for personalized therapeutic intervention.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Salvatore Caponnetto
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| |
Collapse
|
5
|
Zhao D, Song J, Ji C. Endoplasmic reticulum stress regulates apoptosis and chemotherapeutic via enhancing TNFRSF10B recycling to the cell membrane in triple-negative breast cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03509-1. [PMID: 38967737 DOI: 10.1007/s12094-024-03509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most common malignant tumor in China. The expression and cell surface levels of TNF receptor superfamily member 10B (TNFRSF10B) are associated with apoptosis and chemotherapy. However, the precise molecular mechanisms that govern the regulation of TNFRSF10B remain unclear. MATERIALS AND METHODS RNA-Seq data related to TNBC chemotherapy resistance were acquired from the GEO database. The mRNA and protein levels of TNFRSF10B were detected using RT-PCR and Western blotting, respectively. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect cell proliferation. Annexin V/7-AAD staining was used to evaluate apoptosis. The cell membrane TNFRSF10B was analyzed by Western blotting and immunofluorescence. Inducers and inhibitors of endoplasmic reticulum stress (ERS) were used to assess the effect of ERS on TNFRSF10B localization. RESULTS TNFRSF10B expression was downregulated in TNBC and was associated with prognosis. TNFRSF10B overexpression inhibits the growth of TNBC both in vivo and in vitro and can partially counteract chemotherapy resistance. ERS activation in TNBC promotes the expression of TNFRSF10B, leading to its enrichment on the cell membrane surface, thereby activating the apoptotic pathways. CONCLUSION ERS regulates the expression and subcellular localization of TNFRSF10B in TNBC cells. They synergistically affect anti-apoptosis and chemotherapy resistance in TNBC cells.
Collapse
Affiliation(s)
- Dapeng Zhao
- Breast Surgery (4Th General) Unit, General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, No.24 Centre Street, Xinfu District, Fushun City, 113008, Liaoning Province, China.
| | - Jian Song
- Breast Surgery (4Th General) Unit, General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, No.24 Centre Street, Xinfu District, Fushun City, 113008, Liaoning Province, China
| | - Chongyao Ji
- Breast Surgery (4Th General) Unit, General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry, No.24 Centre Street, Xinfu District, Fushun City, 113008, Liaoning Province, China
| |
Collapse
|
6
|
Araghi M, Gharebakhshi F, Faramarzi F, Mafi A, Mousavi T, Alimohammadi M, Soleimantabar H. Efficacy and Safety of Pembrolizumab Monotherapy or Combined Therapy in Patients with Metastatic Triple-negative Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Gene Ther 2024; 25:72-88. [PMID: 39468438 DOI: 10.2174/0115665232283880240301035621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Metastatic Triple-negative Breast Cancer (mTNBC) is the most aggressive form of breast cancer, with a greater risk of metastasis and recurrence. Research studies have published in-depth analyses of the advantages and disadvantages of pembrolizumab, and early data from numerous trials suggests that patients with mTNBC have had remarkable outcomes. This meta-analysis compares the data from numerous relevant studies in order to evaluate the safety and efficacy of pembrolizumab monotherapy or combination therapies for mTNBC. METHODS To identify eligible RCTs, a thorough literature search was carried out using electronic databases. CMA software was utilized to perform heterogeneity tests using fixed and random-effects models. RESULTS According to our pooled data, the median Progression-free Survival (PFS) was 2.66 months, and the median overall survival (OS) was 12.26 months. Furthermore, by comparing efficacy indicators between PD-L1-positive and PD-L1-negative groups, a correlation was found between the overexpression of PD-L1 with OS, PFS, and ORR. Patients with PD-L1-positive tumors had a higher response rate, with an ORR of 21.1%, compared to the patients with PD-L1-negative tumors. The ORR for first-line immunotherapy was higher than that of ≥second-line immunotherapy. In addition, pembrolizumab plus combination treatment resulted in a pooled incidence of immune- related adverse events of 22.7%. CONCLUSION A modest response to pembrolizumab monotherapy was detected in the mTNBC patients. Furthermore, a better outcome from pembrolizumab treatment may be predicted by PD-L1-- positive status, non-liver/lung metastases, combination therapy, and first-line immunotherapy. Pembrolizumab, in combination with chemotherapy, may be more beneficial for patients whose tumors are PD-L1 positive.
Collapse
Affiliation(s)
- Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farshad Gharebakhshi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahoora Mousavi
- Molecular and Cell Biology Research Center (MCBRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Medical Sciences Technologies, Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Soleimantabar
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
KIM EUNSOOK, KIM SANGHEE, MOON AREE. A novel isoxazole compound CM2-II-173 inhibits the invasive phenotype of triple-negative breast cancer cells. Oncol Res 2023; 31:867-875. [PMID: 37744269 PMCID: PMC10513948 DOI: 10.32604/or.2023.030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Invasion and metastasis are important hallmarks of breast cancer and are the leading cause of patient mortality. Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer characterized by a poor prognosis and a lack of effective targeted therapies. The present study investigated the inhibitory effect of a novel FTY720 derivative on the invasive phenotype of TNBC cells. Here, we showed that a novel compound with an isoxazole ring, 4-(3-Decylisoxazol-5-yl)-1-hydroxy-2-(hydroxymethyl)butan-2-aminium chloride (CM2-II-173), significantly inhibited invasiveness of MDA-MB-231 TNBC cells. Expression of matrix metalloproteinase (MMP)-9 and invasiveness of MCF10A normal breast cells induced by sphingosine-1-phosphate (S1P) were reduced by CM2-II-173 treatment. Activations of pMEK1, pAkt, pERK, and p38 MAPK by S1P were inhibited by treatment with CM2-II-173. Proliferation and anchorage-independent growth of MDA-MB-231 TNBC cells were significantly decreased by CM2-II-173. CM2-II-173 efficiently induced apoptosis in MDA-MB-231 TNBC cells. CM2-II-173 significantly inhibited invasive phenotypes of breast, liver, prostate, and ovarian cancer cells. CM2-II-173 exhibited a more potent effect on the invasiveness of MDA-MB-231 TNBC cells compared to FTY720. Taken together, this study demonstrated that CM2-II-173 has the potential to be a lead compound that can inhibit cancer progression of not only TNBC cells, but also of liver, prostate, and ovarian cancer cells.
Collapse
Affiliation(s)
- EUN SOOK KIM
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, 03169, Korea
| | - SANGHEE KIM
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - AREE MOON
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, 03169, Korea
| |
Collapse
|
8
|
Ding YN, Ding HY, Li H, Yang R, Huang JY, Chen H, Wang LH, Wang YJ, Hu CM, An YL, Zhang ZY, Yu WP, Tang QS, Shao GL. Photosensitive Small Extracellular Vesicles Regulate the Immune Microenvironment of Triple Negative Breast Cancer. Acta Biomater 2023:S1742-7061(23)00329-X. [PMID: 37302734 DOI: 10.1016/j.actbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Currently, the treatment of triple-negative breast cancer (TNBC) is limited by the special pathological characteristics of this disease. In recent years, photodynamic therapy (PDT) has created new hope for the treatment of TNBC. Moreover, PDT can induce immunogenic cell death (ICD) and improve tumor immunogenicity. However, even though PDT can improve the immunogenicity of TNBC, the inhibitory immune microenvironment of TNBC still weakens the antitumor immune response. Therefore, we used the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by TNBC cells to improve the tumor immune microenvironment and enhance antitumor immunity. In addition, bone mesenchymal stem cell (BMSC)-derived sEVs have good biological safety and a strong drug loading capacity, which can effectively improve the efficiency of drug delivery. In this study, we first obtained primary BMSCs and sEVs, and then the photosensitizers Ce6 and GW4869 were loaded into the sEVs by electroporation to produce immunomodulatory photosensitive nanovesicles (Ce6-GW4869/sEVs). When administered to TNBC cells or orthotopic TNBC models, these photosensitive sEVs could specifically target TNBC and improve the tumor immune microenvironment. Moreover, PDT combined with GW4869-based therapy showed a potent synergistic antitumor effect mediated by direct killing of TNBC and activation of antitumor immunity. Here, we designed photosensitive sEVs that could target TNBC and regulate the tumor immune microenvironment, providing a potential approach for improving the effectiveness of TNBC treatment. STATEMENT OF SIGNIFICANCE: We designed an immunomodulatory photosensitive nanovesicle (Ce6-GW4869/sEVs) with the photosensitizer Ce6 to achieve photodynamic therapy and the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by triple-negative breast cancer (TNBC) cells to improve the tumor immune microenvironment and enhance antitumor immunity. In this study, the immunomodulatory photosensitive nanovesicle could target TNBC cells and regulate the tumor immune microenvironment, thus providing a potential approach for improving the treatment effect in TNBC. We found that the reduction in tumor sEVs secretion induced by GW4869 improved the tumor-suppressive immune microenvironment. Moreover, similar therapeutic strategies can also be applied in other kinds of tumors, especially immunosuppressive tumors, which is of great value for the clinical translation of tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-Nan Ding
- Medical School of Southeast University, Nanjing 210009, China
| | - Hui-Yan Ding
- Medical School of Southeast University, Nanjing 210009, China
| | - Han Li
- Department of tuberculosis, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Yang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, China
| | - Jia-Yan Huang
- Department of tuberculosis, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - He Chen
- First people's hospital of Changzhou, Changzhou, Jiangsu, China
| | - Lu-Hong Wang
- Medical School of Southeast University, Nanjing 210009, China
| | - Yun-Juan Wang
- Medical School of Southeast University, Nanjing 210009, China
| | - Chun-Mei Hu
- Department of tuberculosis, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Li An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Yuan Zhang
- Department of Neurosurgery, Nanjing Jinling hospital, Nanjing University, Nanjing 210002, China
| | - Wei-Ping Yu
- Medical School of Southeast University, Nanjing 210009, China..
| | - Qiu-Sha Tang
- Medical School of Southeast University, Nanjing 210009, China..
| | - Guo-Liang Shao
- Department of interventional oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China..
| |
Collapse
|
9
|
Emens LA, Loi S. Immunotherapy Approaches for Breast Cancer Patients in 2023. Cold Spring Harb Perspect Med 2023; 13:13/4/a041332. [PMID: 37011999 PMCID: PMC10071416 DOI: 10.1101/cshperspect.a041332] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Immunotherapy, particularly agents targeting the immunoregulatory PD-1/PD-L1 axis, harnesses the power of the immune system to treat cancer, with unique potential for a durable treatment effect due to immunologic memory. The PD-1 inhibitor pembrolizumab combined with neoadjuvant chemotherapy followed by adjuvant pembrolizumab improves event-free survival and is a new standard of care for high-risk, early-stage triple-negative breast cancer (TNBC), regardless of tumor PD-L1 expression. For metastatic TNBC, pembrolizumab combined with chemotherapy is a new standard of care for the first-line therapy of PD-L1+ metastatic TNBC, with improvement in overall survival. The PD-L1 inhibitor atezolizumab combined with nab-paclitaxel is also approved outside the United States for the first-line treatment of metastatic PD-L1+ TNBC. Current research focuses on refining the use of immunotherapy in TNBC by defining informative predictive biomarkers, developing immunotherapy in early and advanced HER2-driven and luminal breast cancers, and overcoming primary and secondary resistance to immunotherapy through unique immune-based strategies.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, University of Pittsburgh/UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, USA
- Ankyra Therapeutics, Boston, Massachusetts 02116, USA
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Ferraro MG, Bocchetti M, Riccardi C, Trifuoggi M, Paduano L, Montesarchio D, Misso G, Santamaria R, Piccolo M, Irace C. Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem. Int J Mol Sci 2023; 24:ijms24076473. [PMID: 37047448 PMCID: PMC10094725 DOI: 10.3390/ijms24076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Based on compelling preclinical evidence concerning the progress of our novel ruthenium-based metallotherapeutics, we are focusing research efforts on challenging indications for the treatment of invasive neoplasms such as the triple-negative breast cancer (TNBC). This malignancy mainly afflicts younger women, who are black, or who have a BRCA1 mutation. Because of faster growing and spreading, TNBC differs from other invasive breast cancers having fewer treatment options and worse prognosis, where existing therapies are mostly ineffective, resulting in a large unmet biomedical need. In this context, we benefited from an experimental model of TNBC both in vitro and in vivo to explore the effects of a biocompatible cationic liposomal nanoformulation, named HoThyRu/DOTAP, able to effectively deliver the antiproliferative ruthenium(III) complex AziRu, thus resulting in a prospective candidate drug. As part of the multitargeting mechanisms featuring metal-based therapeutics other than platinum-containing agents, we herein validate the potential of HoThyRu/DOTAP liposomes to act as a multimodal anticancer agent through inhibition of TNBC cell growth and proliferation, as well as migration and invasion. The here-obtained preclinical findings suggest a potential targeting of the complex pathways network controlling invasive and migratory cancer phenotypes. Overall, in the field of alternative chemotherapy to platinum-based drugs, these outcomes suggest prospective brand-new settings for the nanostructured AziRu complex to get promising goals for the treatment of metastatic TNBC.
Collapse
|
11
|
Tang W, Gao Y, Tong H, Xu X, Zhu Z, Liu B. Green synthesis of ferrocenyl chalcones against triple negative breast cancer. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
di Mauro P, Schivardi G, Pedersini R, Laini L, Esposito A, Amoroso V, Laganà M, Grisanti S, Cosentini D, Berruti A. Sacituzumab govitecan and radiotherapy in metastatic, triple-negative, and BRCA-mutant breast cancer patient with active brain metastases: A case report. Front Oncol 2023; 13:1139372. [PMID: 36890829 PMCID: PMC9987211 DOI: 10.3389/fonc.2023.1139372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive cancer subtype, owing to its high metastatic potential: Patients who develop brain metastases (BMs) have a poor prognosis due to the lack of effective systemic treatments. Surgery and radiation therapy are valid options, while pharmacotherapy still relies on systemic chemotherapy, which has limited efficacy. Among the new treatment strategies available, the antibody-drug conjugate (ADC) sacituzumab govitecan has shown an encouraging activity in metastatic TNBC, even in the presence of BMs. Case presentation A 59-year-old woman was diagnosed with early TNBC and underwent surgery and subsequent adjuvant chemotherapy. A germline pathogenic variant in BReast CAncer gene 2 (BRCA2) was revealed after genetic testing. After 11 months from the completion of adjuvant treatment, she had pulmonary and hilar nodal relapse and began first-line chemotherapy with carboplatin and paclitaxel. However, after only 3 months from starting the treatment, she experienced relevant disease progression, due to the appearance of numerous and symptomatic BMs. Sacituzumab govitecan (10 mg/kg) was started as second-line treatment as part of the Expanded Access Program (EAP). She reported symptomatic relief after the first cycle and received whole-brain radiotherapy (WBRT) concomitantly to sacituzumab govitecan treatment. The subsequent CT scan showed an extracranial partial response and a near-to-complete intracranial response; no grade 3 adverse events were reported, even if sacituzumab govitecan was reduced to 7.5 mg/kg due to persistent G2 asthenia. After 10 months from starting sacituzumab govitecan, a systemic disease progression was documented, while intracranial response was maintained. Conclusions This case report supports the potential efficacy and safety of sacituzumab govitecan in the treatment of early recurrent and BRCA-mutant TNBC. Despite the presence of active BMs, our patient had a progression-free survival (PFS) of 10 months in the second-line setting and sacituzumab govitecan was safe when administered together with radiation therapy. Further real-world data are warranted to confirm sacituzumab govitecan efficacy in this patient population.
Collapse
Affiliation(s)
- Pierluigi di Mauro
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Greta Schivardi
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Rebecca Pedersini
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy.,Breast Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Lara Laini
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Andrea Esposito
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Vito Amoroso
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Marta Laganà
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy.,Breast Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| |
Collapse
|
13
|
Zhang J, Jin H, Pan S, Han C, Sun Q, Han X. Immune checkpoints expression patterns in early-stage triple-negative breast cancer predict prognosis and remodel the tumor immune microenvironment. Front Immunol 2023; 14:1073550. [PMID: 36814908 PMCID: PMC9939840 DOI: 10.3389/fimmu.2023.1073550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Background Currently, targeting immune checkpoint molecules holds great promise for triple-negative breast cancer (TNBC). However, the expression landscape of immune checkpoint genes (ICGs) in TNBC remains largely unknown. Method Herein, we systematically investigated the ICGs expression patterns in 422 TNBC samples. We evaluated the ICGs molecular typing based on the ICGs expression profile and explored the associations between ICGs molecular subtypes and tumor immune characteristics, clinical significance, and response to immune checkpoint inhibitors (ICIs). Results Two ICGs clusters and two ICGs-related gene clusters were determined, which were involved in different survival outcomes, biological roles and infiltration levels of immune cells. We established a quantification system ICGs riskscore (named IRS) to assess the ICGs expression patterns for individuals. TNBC patients with lower IRS were characterized by increased immune cell infiltration, favorable clinical outcomes and high sensitivity to ICIs therapy. We also developed a nomogram model combining clinicopathological variables to predict overall survival in TNBC. Genomic feature analysis revealed that high IRS group presented an increased tumor mutation burden compared with the low IRS group. Conclusion Collectively, dissecting the ICGs expression patterns not only provides a new insight into TNBC subtypes but also deepens the understanding of ICGs in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Medical Oncology, Wan Nan Medical College, Wuhu, China
| | - Chaoqiang Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Zhang Z. POLD2 is activated by E2F1 to promote triple-negative breast cancer proliferation. Front Oncol 2022; 12:981329. [PMID: 36119494 PMCID: PMC9479206 DOI: 10.3389/fonc.2022.981329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant breast cancer subtype with a poor prognosis. Improved insight into the molecular biology basis of TNBC progression is urgently needed. Herein, we reported that POLD2 was highly expressed in TNBC and patients with high POLD2 expression in their tumors had poor clinical outcomes. In functional studies, knockdown of POLD2 inhibited the proliferation of TNBC. Mechanistically, we revealed that transcription factor E2F1 directly bound to the promoter of POLD2 and regulated its expression in TNBC cells, which in turn contributed to the proliferation of TNBC. Additionally, rescue experiments validated that E2F1-mediated cell proliferation in TNBC was dependent on POLD2. Taken together, our results elucidated a novel mechanism of the E2F1-POLD2 axis in TNBC proliferation, and POLD2 may be a potential therapeutic target for TNBC treatment.
Collapse
|
15
|
Wang H, Zhao C, Santa-Maria CA, Emens LA, Popel AS. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 2022; 25:104702. [PMID: 35856032 PMCID: PMC9287616 DOI: 10.1016/j.isci.2022.104702] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/07/2022] Open
Abstract
Quantitative systems pharmacology (QSP) modeling is an emerging mechanistic computational approach that couples drug pharmacokinetics/pharmacodynamics and the course of disease progression. It has begun to play important roles in drug development for complex diseases such as cancer, including triple-negative breast cancer (TNBC). The combination of the anti-PD-L1 antibody atezolizumab and nab-paclitaxel has shown clinical activity in advanced TNBC with PD-L1-positive tumor-infiltrating immune cells. As tumor-associated macrophages (TAMs) serve as major contributors to the immuno-suppressive tumor microenvironment, we incorporated the dynamics of TAMs into our previously published QSP model to investigate their impact on cancer treatment. We show that through proper calibration, the model captures the macrophage heterogeneity in the tumor microenvironment while maintaining its predictive power of the trial results at the population level. Despite its high mechanistic complexity, the modularized QSP platform can be readily reproduced, expanded for new species of interest, and applied in clinical trial simulation. A mechanistic model of quantitative systems pharmacology in immuno-oncology Dynamics of tumor-associated macrophages are integrated into our previous work Conducting in silico clinical trials to predict clinical response to cancer therapy
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu211166, China
| | - Cesar A Santa-Maria
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
16
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|