1
|
Palanivel V, Gupta V, Chitranshi N, Tietz O, Vander Wall R, Blades R, Maha Thananthirige KP, Salkar A, Shen C, Mirzaei M, Gupta V, Graham SL, Basavarajappa D. Neuropeptide Y receptor activation preserves inner retinal integrity through PI3K/Akt signaling in a glaucoma mouse model. PNAS NEXUS 2024; 3:pgae299. [PMID: 39114576 PMCID: PMC11305140 DOI: 10.1093/pnasnexus/pgae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Neuropeptide Y (NPY), an endogenous peptide composed of 36 amino acids, has been investigated as a potential therapeutic agent for neurodegenerative diseases due to its neuroprotective attributes. This study investigated the neuroprotective effects of NPY in a mouse model of glaucoma characterized by elevated intraocular pressure (IOP) and progressive retinal ganglion cell degeneration. Elevated IOP in mice was induced through intracameral microbead injections, accompanied by intravitreal administration of NPY peptide. The results demonstrated that NPY treatment preserved both the structural and functional integrity of the inner retina and mitigated axonal damage and degenerative changes in the optic nerve under high IOP conditions. Further, NPY treatment effectively reduced inflammatory glial cell activation, as evidenced by decreased expression of glial fibrillary acidic protein and Iba-1. Notably, endogenous NPY expression and its receptors (NPY-Y1R and NPY-Y4R) levels were negatively affected in the retina under elevated IOP conditions. NPY treatment restored these changes to a significant extent. Molecular analysis revealed that NPY mediates its protective effects through the mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. These findings highlight the therapeutic potential of NPY in glaucoma treatment, underscoring its capacity to preserve retinal health, modulate receptor expression under stress, reduce neuroinflammation, and impart protection against axonal impairment.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Ole Tietz
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Reuben Blades
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Kanishka Pushpitha Maha Thananthirige
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Chao Shen
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
3
|
Tüfekci KK, Bakirhan EG, Terzi F. A Maternal High-Fat Diet Causes Anxiety-Related Behaviors by Altering Neuropeptide Y1 Receptor and Hippocampal Volumes in Rat Offspring: the Potential Effect of N-Acetylcysteine. Mol Neurobiol 2023; 60:1499-1514. [PMID: 36502431 DOI: 10.1007/s12035-022-03158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
The children of obese mothers are known to have a high risk of obesity and metabolic disease and are prone to developing cognitive deficits, although the underlying mechanism is not yet fully understood. This study investigated the relationship between neuropeptide Y1 receptor (NPY1R) and anxiety-like behaviors in the hippocampi of male rat offspring exposed to maternal obesity and the potential neuroprotective effects of N-acetylcysteine (NAC). A maternal obesity model was created using a high-fat (60% k/cal) diet. NAC (150 mg/kg) was administered by intragastric gavage for 25 days in both the NAC and obesity + NAC (ObNAC) groups. All male rat offspring were subjected to behavioral testing on postnatal day 28, the end of the experiment. Stereological analysis was performed on hippocampal sections, while NPY1R expression was determined using immunohistochemical methods. Stereological data indicated significant decreases in the total volume of the hippocampus and CA1 and dentate gyrus (DG) regions in the obese (Ob) group (p < 0.01). Decreased NPY1R expression was observed in the Ob group hippocampus (p < 0.01). At behavioral assessments, the Ob group rats exhibited increased anxiety and less social interaction, although the ObNAC group rats exhibited stronger responses than the Ob group (p < 0.01). The study results show that NAC attenuated anxiety-like behaviors and NPY1R expression and also protected hippocampal volume against maternal obesity. The findings indicate that a decrease in NPY1R-positive neurons in the hippocampus of male rats due to maternal conditions may be associated with increased levels of anxiety and a lower hippocampal volume. Additionally, although there is no direct evidence, maintenance of NPY1R expression by NAC may be critical for regulating maternal obesity-induced anxiety-related behaviors and hippocampal structure.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey.
| | - Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
4
|
Hu S, Wang Y, Han X, Dai M, Zhang Y, Ma Y, Weng S, Xiao L. Activation of oxytocin receptors in mouse GABAergic amacrine cells modulates retinal dopaminergic signaling. BMC Biol 2022; 20:205. [PMID: 36127701 PMCID: PMC9490981 DOI: 10.1186/s12915-022-01405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Oxytocin, secreted by oxytocin neurons in the hypothalamus, is an endogenous neuropeptide involved in modulating multiple sensory information processing pathways, and its roles in the brain have been associated with prosocial, maternal, and feeding-related behaviors. Visual information is necessary for initiating these behaviors, with the retina consisting of the first stage in the visual system mediating external stimulus perception. Oxytocin has been detected in the mammalian retina; however, the expression and possible function of oxytocin receptors (OxtR) in the retina remain unknown. Here, we explore the role of oxytocin in regulating visual information processing in the retina. Results We observed that OxtR mRNA and protein are expressed in the mouse retina. With Oxtr-Cre transgenic mice, immunostaining, and fluorescence in situ hybridization, we found that OxtRs are mainly expressed in GABAergic amacrine cells (ACs) in both the inner nuclear layer (INL) and ganglion cell layer (GCL). Further immunoreactivity studies showed that GABAergic OxtR+ neurons are mainly cholinergic and dopaminergic neurons in the INL and are cholinergic and corticotrophin-releasing hormone neurons in the GCL. Surprisingly, a high level of Oxtr mRNAs was detected in retinal dopaminergic neurons, and exogenous oxytocin application activated dopaminergic neurons to elevate the retinal dopamine level. Relying on in vivo electroretinographic recording, we found that activating retinal OxtRs reduced the activity of bipolar cells via OxtRs and dopamine receptors. Conclusions These data indicate the functional expression of OxtRs in retinal GABAergic ACs, especially dopaminergic ACs, and expand the interactions between oxytocinergic and dopaminergic systems. This study suggests that visual perception, from the first stage of information processing in the retina, is modulated by hypothalamic oxytocin signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01405-0.
Collapse
Affiliation(s)
- Songhui Hu
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yurong Wang
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xu Han
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Min Dai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongxing Zhang
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shijun Weng
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Yao Y, Hu Y, Yang J, Zhang C, He Y, Qi H, Zeng Y, Zhang A, Liu X, Zhu X. Inhibition of neuronal nitric oxide synthase protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in temporal lobe epilepsy mice. Free Radic Biol Med 2022; 188:45-61. [PMID: 35714846 DOI: 10.1016/j.freeradbiomed.2022.06.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a pivotal role in the pathological process of neuronal injury in the development of epilepsy. Our previous study has demonstrated that nitric oxide (NO) derived from nNOS in the epileptic brain is neurotoxic due to its reaction with the superoxide radical with the formation of peroxynitrite. Neuropeptide Y (NPY) is widely expressed in the mammalian brain, which has been implicated in energy homeostasis and neuroprotection. Recent studies suggest that nNOS may act as a mediator of NPY signaling. Here in this study, we sought to determine whether NPY expression is regulated by nNOS, and if so, whether the regulation of NPY by nNOS is associated with the neuronal injuries in the hippocampus of epileptic brain. Our results showed that pilocarpine-induced temporal lobe epilepsy (TLE) mice exhibited an increased level of nNOS expression and a decreased level of NPY expression along with hippocampal neuronal injuries and cognition deficit. Genetic deletion of nNOS gene, however, significantly upregulated hippocampal NPY expression and reduced TLE-induced hippocampal neuronal injuries and cognition decline. Knockdown of NPY abolished nNOS depletion-induced neuroprotection and cognitive improvement in the TLE mice, suggesting that inhibition of nNOS protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in TLE mice. Targeting nNOS-NPY signaling pathway in the epileptic brain might provide clinical benefit by attenuating neuronal injuries and preventing cognitive deficits in epilepsy patients.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yang Hu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Canyu Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuqi He
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yu Zeng
- National Residents Clinical Skills Training Center, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Sheng W, Yu M, Wang X, Jin M, Pang X, Li C, Zhang S, Li P, Wang X, Zhang C, Zhang Y, Liu K. Localization of neuropeptide receptor NPY4R in rat retina. Neuropeptides 2022; 93:102246. [PMID: 35453028 DOI: 10.1016/j.npep.2022.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is a significant neuromodulator implicated in a multitude of physiological functions via activating NPY receptors which belong to seven transmembrane G-protein-coupled receptors (GPCRs). However, the detailed cellular expression of NPY receptors in retina has been scarcely investigated. In this study, the expression of the special NPY4R receptor in rat retina was assessed using Western blot analysis and immunofluorescent staining. The detailed cellular localization of NPY4R receptor was studied using double immunofluorescent staining and laser-scanning confocal microscopy. Our data demonstrated that NPY4R receptor was weakly expressed in the inner segment of outer photoreceptors and extensively expressed in the outer segment of S-opsin-positive blue cones, L/M-opsin-positive red/green cones and in the somata of CB-positive horizontal cells, GAD65-positive GABAnergic amacrine cells, ChAT-positive cholinergic amacrine cells, TH-positive dopaminergic CA1 amacrine cells and CA2 amacrine cells, PV-positive AII amacrine cells, Brn3a-positive conventional ganglion cells and melanopsin-containing ipRGCs. In addition, NPY4R receptor was diffusely distributed throughout the full thickness of the inner plexiform layer and outer plexiform layer. However, the outer segment of Rho4D2-positive rods, the somata of ChX10-positive bipolar cells and CRALBP-positive Müller glial cells seemed to lack immunoreactivity of NPY4R receptor. The new finding that multiple types of retinal cell express NPY4R receptor provides new neurobiological basis for the participation of NPY in the regulation of retinal functions through activating NPY4R receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China.
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xiangming Pang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Changqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China.
| |
Collapse
|
7
|
Reboussin É, Buffault J, Brignole-Baudouin F, Réaux-Le Goazigo A, Riancho L, Olmiere C, Sahel JA, Mélik Parsadaniantz S, Baudouin C. Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. J Neuroinflammation 2022; 19:63. [PMID: 35236378 PMCID: PMC8892697 DOI: 10.1186/s12974-022-02418-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. METHODS Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). RESULTS The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. CONCLUSION Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.
Collapse
Affiliation(s)
- Élodie Reboussin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France
| | - Juliette Buffault
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France. .,Service 3, CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France.
| | - Françoise Brignole-Baudouin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France.,Laboratoire, CHNO des Quinze-Vingts, 28 rue de Charenton, 75012, Paris, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France
| | - Luisa Riancho
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France
| | | | - José-Alain Sahel
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France.,Service 3, CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, 75012, Paris, France.,Service 3, CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
| |
Collapse
|
8
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Boia R, Dias PA, Galindo-Romero C, Ferreira H, Aires ID, Vidal-Sanz M, Agudo-Barriuso M, Bernardes R, Santos PF, de Sousa HC, Ambrósio AF, Braga ME, Santiago AR. Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. J Control Release 2022; 343:469-481. [DOI: 10.1016/j.jconrel.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
10
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
11
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|
12
|
Ou K, Copland DA, Theodoropoulou S, Mertsch S, Li Y, Liu J, Schrader S, Liu L, Dick AD. Treatment of diabetic retinopathy through neuropeptide Y-mediated enhancement of neurovascular microenvironment. J Cell Mol Med 2020; 24:3958-3970. [PMID: 32141716 PMCID: PMC7171318 DOI: 10.1111/jcmm.15016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most severe clinical manifestations of diabetes mellitus and a major cause of blindness. DR is principally a microvascular disease, although the pathogenesis also involves metabolic reactive intermediates which induce neuronal and glial activation resulting in disruption of the neurovascular unit and regulation of the microvasculature. However, the impact of neural/glial activation in DR remains controversial, notwithstanding our understanding as to when neural/glial activation occurs in the course of disease. The objective of this study was to determine a potential protective role of neuropeptide Y (NPY) using an established model of DR permissive to N-methyl-D-aspartate (NMDA)-induced excitotoxic apoptosis of retinal ganglion cells (RGC) and vascular endothelial growth factor (VEGF)-induced vascular leakage. In vitro evaluation using primary retinal endothelial cells demonstrates that NPY promotes vascular integrity, demonstrated by maintained tight junction protein expression and reduced permeability in response to VEGF treatment. Furthermore, ex vivo assessment of retinal tissue explants shows that NPY can protect RGC from excitotoxic-induced apoptosis. In vivo clinical imaging and ex vivo tissue analysis in the diabetic model permitted assessment of NPY treatment in relation to neural and endothelial changes. The neuroprotective effects of NPY were confirmed by attenuating NMDA-induced retinal neural apoptosis and able to maintain inner retinal vascular integrity. These findings could have important clinical implications and offer novel therapeutic approaches for the treatment in the early stages of DR.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China.,Laboratory for Experimental Ophthalmology, University of Düsseldorf, Düsseldorf, Germany.,Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sonja Mertsch
- Laboratory for Experimental Ophthalmology, University of Düsseldorf, Düsseldorf, Germany.,Department of Ophthalmology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Youjian Li
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China.,Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stefan Schrader
- Laboratory for Experimental Ophthalmology, University of Düsseldorf, Düsseldorf, Germany.,Department of Ophthalmology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Lei Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital, University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
13
|
Campos EJ, Martins J, Brudzewsky D, Woldbye DPD, Ambrósio AF. Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model. Ann Anat 2019; 227:151419. [PMID: 31563570 DOI: 10.1016/j.aanat.2019.151419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) plays a crucial role in many neurobiological functions, such as cognition and memory. Cognitive and memory impairment have been described in diabetic patients. The metabolism of NPY is determined by the activity of proteases, primarily dipeptidyl-peptidase-IV (DPP-IV). Therefore, DPP-IV inhibitors, such as sitagliptin, may modulate the function of NPY. In this study, we investigated the effect of type 1 diabetes and sitagliptin treatment on the regulation of the mRNA encoding for NPY and its receptors (Y1, Y2, and Y5 receptors) in the hippocampus. METHODS Type 1 diabetes was induced in male Wistar rats by i.p. injection of streptozotocin. Starting two weeks after diabetes onset, animals were treated orally with sitagliptin (5mg/kg, daily) for two weeks. The mRNA expression of Npy and its receptors (Npy1r, Npy2r, and Npy5r) in the hippocampus was evaluated using in situ hybridization with 33P-labeled oligonucleotides. RESULTS The mRNA expression of Npy, Npy1r and Npy5r was higher in the dentate gyrus, whereas Npy2r highest level was observed in the CA3 subregion. The mRNA expression of Npy, Npy1r and Npy5r in dentate gyrus, CA1 and CA3 was not affected by diabetes and/or by sitagliptin treatment. Type 1 diabetes increased the mRNA expression of Npy2r in the CA3 subregion, which was prevented by sitagliptin treatment. CONCLUSIONS Our results show that type 1 diabetes, at early stages, induces mild changes in the NPY system in the hippocampus that were counteracted by sitagliptin treatment.
Collapse
Affiliation(s)
- Elisa J Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Dan Brudzewsky
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - David P D Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
15
|
Christiansen AT, Sørensen NB, Haanes KA, Blixt FW, la Cour M, Warfvinge K, Klemp K, Woldbye DPD, Kiilgaard JF. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model. Acta Ophthalmol 2018; 96:812-820. [PMID: 30218483 DOI: 10.1111/aos.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo. METHODS Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries. RESULTS Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5. CONCLUSION In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2.
Collapse
Affiliation(s)
- Anders T. Christiansen
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Nina B. Sørensen
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Morten la Cour
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
16
|
Businaro R, Scaccia E, Bordin A, Pagano F, Corsi M, Siciliano C, Capoano R, Procaccini E, Salvati B, Petrozza V, Totta P, Vietri MT, Frati G, De Falco E. Platelet Lysate-Derived Neuropeptide y Influences Migration and Angiogenesis of Human Adipose Tissue-Derived Stromal Cells. Sci Rep 2018; 8:14365. [PMID: 30254326 PMCID: PMC6156505 DOI: 10.1038/s41598-018-32623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y (NPY), a powerful neurotransmitter of the central nervous system, is a key regulator of angiogenesis and biology of adipose depots. Intriguingly, its peripheral vascular and angiogenic powerful activity is strictly associated to platelets, which are source of clinical hemoderivates, such as platelet lysate (PL), routinely employed in several clinical applications as wound healing, and to preserve ex vivo the progenitor properties of the adipose stromal cells pool. So far, the presence of NPY in PL and its biological effects on the adipose stromal cell fraction (ASCs) have never been investigated. Here, we aimed to identify endogenous sources of NPY such as PL-based preparations and to investigate which biological properties PL-derived NPY is able to exert on ASCs. The results show that PL contains a high amount of NPY, which is in part also excreted by ASCs when stimulated with PL. The protein levels of the three main NPY subtype receptors (Y1, Y2, Y5) are unaltered by stimulation of ASCs with PL, but their inhibition through selective pharmacological antagonists, considerably enhances migration, and a parallel reduction of angiogenic features of ASCs including decrease in VEGF mRNA and intracellular calcium levels, both downstream targets of NPY. The expression of VEGF and NPY is enhanced within the sites of neovascularisation of difficult wounds in patients after treatment with leuco-platelet concentrates. Our data highlight the presence of NPY in PL preparations and its peripheral effects on adipose progenitors.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Eleonora Scaccia
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Antonella Bordin
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Francesca Pagano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Mariangela Corsi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Camilla Siciliano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Raffaele Capoano
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Eugenio Procaccini
- Breast Unit, A.O. U. Università della Campania Luigi Vanvitelli, piazza Luigi Miraglia, 280138, Naples, Italy
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | | | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giacomo Frati
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli, (IS), Italy
| | - Elena De Falco
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
17
|
Campos EJ, Martins J, Brudzewsky D, Correia S, Santiago AR, Woldbye DP, Ambrósio AF. Impact of type 1 diabetes mellitus and sitagliptin treatment on the neuropeptide Y system of rat retina. Clin Exp Ophthalmol 2018; 46:783-795. [PMID: 29442423 DOI: 10.1111/ceo.13176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a neuromodulator that is expressed in the retina. Increasing evidence suggests that NPY has pronounced anti-inflammatory effects, which might depend on the inhibition of dipeptidyl-peptidase-IV (DPP-IV). The aim of this study was to investigate the impact of type 1 diabetes mellitus (DM) and sitagliptin, a DPP-IV inhibitor, on the NPY system in the retina using an animal model. METHODS Type 1 DM was induced in male Wistar rats by an intraperitoneal injection of streptozotocin. Starting 2 weeks after DM onset, animals were treated orally with sitagliptin (5 mg/kg.day) for 2 weeks. The expression of NPY and NPY receptors (Y1 , Y2 and Y5 receptors) was measured by quantitative polymerase chain reaction, Western blot and/or enzyme-linked immunosorbent assay. The immunoreactivity of NPY and NPY receptors was evaluated by immunohistochemistry, and the [35 S]GTPγS binding assay was used to assess the functional binding of NPY receptors. RESULTS DM decreased the mRNA levels of NPY in the retina, as well as the protein levels of NPY and Y5 receptor. No changes were detected in the localization of NPY and NPY receptors in the retina and in the functional binding of NPY to all receptors. Sitagliptin alone reduced retinal NPY mRNA levels. The effects of DM on the NPY system were not affected by sitagliptin. CONCLUSION DM modestly affects the NPY system in the retina and these effects are not prevented by sitagliptin treatment. These observations suggest that DPP-IV enzyme is not underlying the NPY changes detected in the retina induced by type 1 DM.
Collapse
Affiliation(s)
- Elisa J Campos
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Dan Brudzewsky
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana R Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - David Pd Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - António F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
18
|
Christiansen AT, Kiilgaard JF, Klemp K, Woldbye DPD, Hannibal J. Localization, distribution, and connectivity of neuropeptide Y in the human and porcine retinas-A comparative study. J Comp Neurol 2018; 526:1877-1895. [DOI: 10.1002/cne.24455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jens Folke Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - David Paul Drucker Woldbye
- Laboratory of Neural Plasticity; Center for Neuroscience, Faculty of Health Sciences, University of Copenhagen; Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry; Copenhagen University Hospital, Bispebjerg Hospital; Copenhagen Denmark
| |
Collapse
|
19
|
Opere CA, Heruye S, Njie-Mbye YF, Ohia SE, Sharif NA. Regulation of Excitatory Amino Acid Transmission in the Retina: Studies on Neuroprotection. J Ocul Pharmacol Ther 2017; 34:107-118. [PMID: 29267132 DOI: 10.1089/jop.2017.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Excitotoxicity occurs in neurons due to the accumulation of excitatory amino acids such as glutamate in the synaptic and extrasynaptic locations. In the retina, excessive glutamate concentrations trigger a neurotoxic cascade involving several mechanisms, including the elevation of intracellular calcium (Ca2+) and the activation of α-amino-3-hydroxy 5-methyl-4-iso-xazole-propionic acid/kainate (AMPA/KA) and N-methyl-d-aspartate (NMDA) receptors leading to retinal degeneration. Both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are present in the mammalian retina. Indeed, due to the abundant expression of GluRs, the mammalian retina is highly susceptible to excitotoxic neurodegeneration. Excitotoxicity has been postulated to present a common downstream mechanism for several stimuli, including hypoglycemia, hypoxia, ischemia, and chronic neurodegenerative diseases. Experimental approaches to the study of neuroprotection in the retina have utilized insults that trigger hypoxia, hypoglycemia, or excitotoxicity. Using these experimental approaches, the neuroprotective potential of GluR agents, including the NMDA receptor modulators (MK801, ifenprodil, memantine); AMPA/KA receptor antagonist (CNQX); Group II and III mGluR agonists (LY354740, quisqualate); and Ca2+-channel blockers (diltiazem, lomerizine, verapamil, ω-conotoxin), and others (pituitary adenylate cyclase activating polypeptide, neuropeptide Y, acetylcholine receptor agonists) have been elucidated. In addition to corroborating the exocytotic role of excitatory amino acids in retinal degeneration, these studies affirm that multiple mechanism/s contribute to the prevention of damage caused by excitotoxicity in the retina. Therefore, it is feasible that several pathways are involved in protecting the retina from toxic insults in ocular neurodegenerative conditions such as glaucoma and retinal ischemia. Furthermore, these experimental models are viable tools for evaluating therapeutic candidates in ocular neuropathies.
Collapse
Affiliation(s)
- Catherine A Opere
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Segewkal Heruye
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya-Fatou Njie-Mbye
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Sunny E Ohia
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Najam A Sharif
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas.,3 Santen Incorporated , Emeryville, California
| |
Collapse
|
20
|
Treatment with A 2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death Dis 2017; 8:e3065. [PMID: 28981089 PMCID: PMC5680573 DOI: 10.1038/cddis.2017.451] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/27/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the retina against the damage induced by ischemia–reperfusion (I–R). The available therapeutic strategies for retinal degenerative diseases have limited potential, but the blockade of adenosine A2A receptor (A2AR) emerges as candidate strategy. Therefore, we evaluated the therapeutic potential of a selective A2AR antagonist (KW6002) against the damage elicited by I–R. The administration of KW6002 after I–R injury reduced microglia reactivity and inflammatory response and afforded protection to the retina. Moreover, we tested the ability of caffeine, an adenosine receptor antagonist, in mediating protection to the retina in the I–R injury model. We demonstrated that caffeine administration dually regulated microglia reactivity and cell death in the transient retinal ischemic model, depending on the reperfusion time. At 24 h of reperfusion, caffeine increased microglial reactivity, inflammatory response and cell death elicited by I–R. However, at 7 days of reperfusion, caffeine administration decreased microglia reactivity and reduced the levels of proinflammatory cytokines and cell death. Together, these results provide a novel evidence for the use of adenosine A2AR antagonists as potential therapy for retinal ischemic diseases and demonstrate the effect of caffeine on the regulation of microglia-mediated neuroinflammation in the transient ischemic model.
Collapse
|
21
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
22
|
Kuehn S, Hurst J, Jashari A, Ahrens K, Tsai T, Wunderlich IM, Dick HB, Joachim SC, Schnichels S. The novel induction of retinal ganglion cell apoptosis in porcine organ culture by NMDA - an opportunity for the replacement of animals in experiments. Altern Lab Anim 2017; 44:557-568. [PMID: 28094536 DOI: 10.1177/026119291604400608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Some of the advantages of retina organ culture models include their efficient and easy handling and the ability to standardise relevant parameters. Additionally, when porcine eyes are obtained from the food industry, no animals are killed solely for research purposes. To induce retinal degeneration, a commonly used toxic substance, N-methyl-D-aspartate (NMDA), was applied to the cultures. To this end, organotypic cultures of porcine retinas were cultured and treated with different doses of NMDA (0 [control], 50, 100 and 200μM) on day 2 for 48 hours. On day 7, the retinas were cryo-conserved for histological, Western blot and quantitative rt-PCR (qrt-PCR) analyses. NMDA treatment was found to significantly increase retinal ganglion cell (RGC) apoptosis in all the treated groups, without a profound RGC loss. In addition, the intrinsic apoptotic pathway was activated in the 50μM and 100μM NMDA groups, whereas induced nitric oxide synthase (iNOS) expression was increased in the 200μM group. A slight microglial response was detectable, especially in the 100μM group. NMDA treatment induced apoptosis, oxidative stress and a slight microglia activation. All these effects mimic a chronic slow progressive disease that especially affects RGCs, such as glaucoma. A particular advantage of this model is that mediators that can interact in the very early stages of the onset of RGC death, can be easily detected and potential therapies can be tested.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jose Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany
| | - Adelina Jashari
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Kathrin Ahrens
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ilan M Wunderlich
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany
| |
Collapse
|
23
|
Dulull NK, Thrimawithana TR, Kwa FAA. Mimicking the ocular environment for the study of inflammatory posterior eye disorders. Drug Discov Today 2016; 22:440-446. [PMID: 27871941 DOI: 10.1016/j.drudis.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023]
Abstract
The common inflammatory posterior eye disorders, age-related degeneration and glaucoma often lead to irreversible vision loss. Current treatments do not target early stages or prevent disease progression. Consequently, the identification of biomarkers or early disease models that can accurately mimic the pathological processes involved is essential. Although none of the existing models can recapitulate all pathological aspects of these disorders, these models have revealed new therapeutic targets. Efforts to accurately phenotype eye disorders at various disease stages are warranted to generate a 'super' model that can replicate the microenvironment of the eye and associated pathological hallmarks effectively.
Collapse
Affiliation(s)
- Nabeela K Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Thilini R Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Faith A A Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
24
|
Madeira MH, Boia R, Elvas F, Martins T, Cunha RA, Ambrósio AF, Santiago AR. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury. Transl Res 2016; 169:112-28. [PMID: 26685039 DOI: 10.1016/j.trsl.2015.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Glaucoma is a leading cause of vision loss and blindness worldwide, characterized by chronic and progressive neuronal loss. Reactive microglial cells have been recognized as a neuropathologic feature, contributing to local inflammation and retinal neurodegeneration. In a recent in vitro work (organotypic cultures), we demonstrated that blockade of adenosine A2A receptor (A2AR) prevents the neuroinflammatory response and affords protection to retinal ganglion cells (RGCs) against exposure to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure (IOP), the main risk factor for glaucoma development. Herein, we investigated whether a selective A2AR antagonist (SCH 58261) could modulate retinal microglia reactivity and their inflammatory response. Furthermore, we took advantage of the high IOP-induced transient ischemia (ischemia-reperfusion, I-R) animal model to evaluate the protective role of A2AR blockade in the control of retinal neuroinflammation and neurodegeneration. Primary microglial cell cultures were challenged either with lipopolysaccharide or with EHP, in the presence or absence of A2AR antagonist SCH 58261 (50 nM). In addition, I-R injury was induced in adult Wistar rats after intravitreal administration of SCH 58261 (100 nM, 5 μL). Our results showed that SCH 58261 attenuated microglia reactivity and the increased expression and release of proinflammatory cytokines. Moreover, intravitreal administration of SCH 58261 prevented I-R-induced cell death and RGC loss, by controlling microglial-mediated neuroinflammatory response. These results prompt the proposal that A2AR blockade may have great potential in the management of retinal neurodegenerative diseases characterized by microglia reactivity and RGC death, such as glaucoma and ischemic diseases.
Collapse
Affiliation(s)
- Maria H Madeira
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Filipe Elvas
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, Portugal
| | - Tiago Martins
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC.IBILI, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|