1
|
Momoi MY. Overview: Research on the Genetic Architecture of the Developing Cerebral Cortex in Norms and Diseases. Methods Mol Biol 2024; 2794:1-12. [PMID: 38630215 DOI: 10.1007/978-1-0716-3810-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The human brain is characterized by high cell numbers, diverse cell types with diverse functions, and intricate connectivity with an exceedingly broad surface of the cortex. Human-specific brain development was accomplished by a long timeline for maturation from the prenatal period to the third decade of life. The long timeline makes complicated architecture and circuits of human cerebral cortex possible, and it makes human brain vulnerable to intrinsic and extrinsic insults resulting in the development of variety of neuropsychiatric disorders. Unraveling the molecular and cellular processes underlying human brain development under the elaborate regulation of gene expression in a spatiotemporally specific manner, especially that of the cortex will provide a biological understanding of human cognition and behavior in health and diseases. Global research consortia and the advancing technologies in brain science including functional genomics equipped with emergent neuroinformatics such as single-cell multiomics, novel human models, and high-volume databases with high-throughput computation facilitate the biological understanding of the development of the human brain cortex. Knowing the process of interplay of the genome and the environment in cortex development will lead us to understand the human-specific cognitive function and its individual diversity. Thus, it is worthwhile to overview the recent progress in neurotechnology to foresee further understanding of the human brain and norms and diseases.
Collapse
Affiliation(s)
- Mariko Y Momoi
- Ryomo Seishi Ryogoen Rehabilitation Hospital for Children with Disabilities, Gunma, Japan
| |
Collapse
|
2
|
Pai MGJ, Biswas D, Verma A, Srivastava S. A proteome-level view of brain tumors for a better understanding of novel diagnosis, prognosis, and therapy. Expert Rev Proteomics 2023; 20:381-395. [PMID: 37970632 DOI: 10.1080/14789450.2023.2283498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Brain tumors are complex and heterogeneous malignancies with significant challenges in diagnosis, prognosis, and therapy. Proteomics, the large-scale study of proteins and their functions, has emerged as a powerful tool to comprehensively investigate the molecular mechanisms underlying brain tumor regulation. AREAS COVERED This review explores brain tumors from a proteomic standpoint, highlighting recent progress and insights gained through proteomic methods. It delves into the proteomic techniques employed and underscores potential biomarkers for early detection, prognosis, and treatment planning. Recent PubMed Central proteomic studies (2017-present) are discussed, summarizing findings on altered protein expression, post-translational changes, and protein interactions. This sheds light on brain tumor signaling pathways and their significance in innovative therapeutic approaches. EXPERT OPINION Proteomics offers immense potential for revolutionizing brain tumor diagnosis and therapy. To unlock its full benefits, further translational research is crucial. Combining proteomics with other omics data enhances our grasp of brain tumors. Validating and translating proteomic biomarkers are vital for better patient results. Challenges include tumor complexity, lack of curated proteomic databases, and the need for collaboration between researchers and clinicians. Overcoming these challenges requires investment in technology, data sharing, and translational research.
Collapse
Affiliation(s)
- Medha Gayathri J Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
3
|
Dong X, Yang L, Liu K, Ji X, Tang C, Li W, Ma L, Mei Y, Peng T, Feng B, Wu Z, Tang Q, Gao Y, Yan K, Zhou W, Xiong M. Transcriptional networks identify synaptotagmin-like 3 as a regulator of cortical neuronal migration during early neurodevelopment. Cell Rep 2021; 34:108802. [PMID: 33657377 DOI: 10.1016/j.celrep.2021.108802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human brain development is a complex process involving neural proliferation, differentiation, and migration that are directed by many essential cellular factors and drivers. Here, using the NetBID2 algorithm and developing human brain RNA sequencing dataset, we identify synaptotagmin-like 3 (SYTL3) as one of the top drivers of early human brain development. Interestingly, SYTL3 exhibits high activity but low expression in both early developmental human cortex and human embryonic stem cell (hESC)-derived neurons. Knockout of SYTL3 (SYTL3-KO) in human neurons or knockdown of Sytl3 in embryonic mouse cortex markedly promotes neuronal migration. SYTL3-KO causes an abnormal distribution of deep-layer neurons in brain organoids and reduces presynaptic neurotransmitter release in hESC-derived neurons. We further demonstrate that SYTL3-KO-accelerated neuronal migration is modulated by high expression of matrix metalloproteinases. Together, based on bioinformatics and biological experiments, we identify SYTL3 as a regulator of cortical neuronal migration in human and mouse developing brains.
Collapse
Affiliation(s)
- Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lin Yang
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Kaiyi Liu
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xiaoli Ji
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China; Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Chuanqing Tang
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wanxing Li
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Ling Ma
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yuting Mei
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ting Peng
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ban Feng
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, Shanghai, China
| | - Ziyan Wu
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, Shanghai, China
| | - Qingyuan Tang
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yanyan Gao
- Ultrasonography Department, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Kai Yan
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Man Xiong
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|