1
|
Wang H, Tang R, Pan Q, Yin Q, Feng J, Deng L. Mitochondria dysfunction: A trigger for cardiovascular diseases in systemic lupus erythematosus. Int Immunopharmacol 2025; 144:113722. [PMID: 39622131 DOI: 10.1016/j.intimp.2024.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular disease (CVD), including pericarditis, myocarditis, sudden cardiac death, coronary heart disease, and stroke, are leading contributors to morbidity and mortality in systemic lupus erythematosus (SLE) patients. Emerging evidence highlights mitochondrial dysfunction as a key driver of cardiovascular pathology in SLE, with impaired oxidative phosphorylation, altered membrane potential, and disrupted metabolic processes promoting oxidative stress, inflammatory activation, and endothelial dysfunction. This review critically examines mitochondrial contributions to CVD in SLE, comparing these mechanisms with those in non-SLE CVD to highlight SLE-specific mitochondrial vulnerabilities. Furthermore, we discuss preclinical and clinical findings supporting mitochondrial pathways as potential therapeutic targets, aiming to bridge gaps in current understanding and outline future research directions. By synthesizing current knowledge of mitochondrial dysregulation, this review proposes therapeutic strategies to improve cardiovascular outcomes and advance patient care in SLE.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyan Yin
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Wang Z, Yang C, Gao W, Sun W, Sun J, Wang H, Yan S, Xu D. Systemic lupus erythematosus-specific CD14 +IFITM3 + monocyte: Implications for disease activity and progression. Int Immunopharmacol 2024; 146:113916. [PMID: 39733642 DOI: 10.1016/j.intimp.2024.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
Interferon-inducible transmembrane (IFITM) family members (IFITM1, IFITM2, IFITM3) are extensively expressed in T cells and are involved in adaptive immunity. However, little is known about the expression of IFITM1, IFITM2 and IFITM3 in monocytes and their roles in systemic lupus erythematosus (SLE). Our study has shown that the expression of IFITM1, IFITM2, and IFITM3 in peripheral blood mononuclear cells (PBMCs) of SLE patients was dysregulated, and the expression of IFITM3 in SLE was significantly higher than that of healthy controls. Besides, the percentage of CD14+IFITM3+ monocyte in the peripheral circulation of SLE patients was significantly increased, which was significantly correlated with inflammatory and immune indexes (ESR, CRP, PLT, urine-β2M, and urine mALB) of SLE. Most importantly, the percentage of CD14+IFITM3+ monocyte was positively associated with the SLEDAI score, suggesting it predictive role in SLE disease activity. In summary, we have found that IFITM3 may serve as a SLE-specific marker and the dysregulation of CD14+IFITM3+ monocyte may affect the disease activity and progression of SLE.
Collapse
Affiliation(s)
- Zhangxue Wang
- Department of Rheumatology and Immunology, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Chunjuan Yang
- Department of Rheumatology and Immunology, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China; Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Wenfeng Gao
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Wenchang Sun
- Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Jiamei Sun
- Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China.
| | - Hui Wang
- Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang 261000, Shandong, China.
| | - Donghua Xu
- Department of Rheumatology and Immunology, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China; Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China.
| |
Collapse
|
3
|
Yanginlar C, Rother N, Post TGJM, Jacobs M, Jonkman I, Brouns M, Rinzema S, Martens JHA, Vermeulen M, Joosten LAB, Netea MG, Hilbrands LB, Choudhry ZA, van der Vlag J, Duivenvoorden R. Trained innate immunity in response to nuclear antigens in systemic lupus erythematosus. J Autoimmun 2024; 149:103335. [PMID: 39549487 DOI: 10.1016/j.jaut.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease directed against nuclear antigens, including those derived from apoptotic microparticles (MPs) and neutrophil extracellular traps (NETs). Here we investigated whether nuclear autoantigens can induce trained immunity in SLE patients. Trained immunity is a de facto innate immune memory elicited by an initial stimulus that induces a more vigorous long-term inflammatory response to subsequent stimuli. Isolated monocytes were stimulated with SLE-typical nuclear antigens, neutrophil extracellular traps (NETs), and apoptotic microparticles (MPs) or plasma from SLE patients. After five days of rest, cells were restimulated with Toll-like receptor (TLR) agonists, and cytokine production was measured using ELISA. Functional, transcriptomic and epigenetic changes in monocytes from SLE patients were evaluated by ex vivo stimulations, flow cytometric analysis, RNA sequencing, and chromatin immunoprecipitation (ChIP) sequencing for histone 3 lysine 4 trimethylation. We found that in vitro, both MPs and NETs, as well as plasma from SLE patients, can induce trained immunity. Furthermore, circulating monocytes from SLE patients produce increased levels of pro-inflammatory cytokines after stimulation with TLR ligands, indicating trained immunity. This is accompanied by deregulation in histone 3 lysine 4 trimethylation and increased expression of metabolism and inflammation-related genes. Our findings demonstrate that trained immunity can develop against nuclear antigens and that trained immunity is involved in the immunological dysregulation in SLE patients.
Collapse
Affiliation(s)
- Cansu Yanginlar
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Tomas G J M Post
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Montsy Brouns
- Department of Internal Medicine, Dr. Horacio Oduber Hospital, Oranjestad, Aruba
| | - Sybren Rinzema
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Zaheeb A Choudhry
- Department of Internal Medicine, Dr. Horacio Oduber Hospital, Oranjestad, Aruba
| | - Johan van der Vlag
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Leber A, Hontecillas R, Tubau-Juni N, Fitch SN, Bassaganya-Riera J. Immunometabolic Mechanisms of LANCL2 in CD4+ T Cells and Phagocytes Provide Protection from Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1429-1440. [PMID: 39365106 DOI: 10.4049/jimmunol.2400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) is an immunoregulatory therapeutic target for autoimmune diseases. NIM-1324 is an investigational new drug aimed at addressing the unmet clinical needs of patients with systemic lupus erythematosus (SLE) by targeting the LANCL2 immunometabolic pathway. In R848 and bm12 adoptive transfer models of systemic inflammation that share pathologies with SLE, Lancl2-/- mice experienced greater mortality, increased spleen weight, and reduced CD25hi FOXP3+ CD4+ regulatory T cells compared with the wild type. Conversely, treatment with NIM-1324 in the wild type increased CD25hi FOXP3+ regulatory T cells while reducing inflammatory IL-17+ and IL-21+ CD4+ T cell subsets in the spleen. In traditional mouse models of SLE (NZB/W F1 and MRL/lpr), oral treatment with NIM-1324 protected against weight loss and proteinuria, decreased anti-dsDNA titers, and provided similar changes to the CD4+ T cell compartment in the spleen. The pharmacological activation of LANCL2 by NIM-1324 rescued hypocomplementemia, reduced kidney histopathological scores, and decreased blood IFN response genes and inflammatory cytokines. The loss of LANCL2 in phagocytes impairs phagosome processing, leading to increased uptake of material and inflammatory cytokine production, yet decreased markers of endosomal maturation, phagosome turnover, and lysozyme activity. Treatment with NIM-1324 increases metabolic and lysozyme activity in the phagosome, providing support for increased markers of early phagosome function. This efficacy translated to human PBMCs from patients with SLE, because ex vivo treatment with NIM-1324 resulted in reduced levels of IFN-α, IL-6, and IL-8. Consequently, the activation of LANCL2 effectively modulates CD4+ T cell differentiation and phagocyte activation, supporting immune tolerance in SLE.
Collapse
|
5
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
6
|
Poznyak AV, Orekhov NA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov AN. Mitochondrial Dysfunction in Systemic Lupus Erythematosus: Insights and Therapeutic Potential. Diseases 2024; 12:226. [PMID: 39329895 PMCID: PMC11430897 DOI: 10.3390/diseases12090226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by the presence of various serum autoantibodies and multi-system effects, predominantly affecting young female patients. The pathogenesis of SLE involves a combination of genetic factors, environmental triggers, and pathogen invasions that disrupt immune cell activation, leading to the release of autoantibodies and chronic inflammation. Mitochondria, as the primary cellular powerhouses, play a crucial role in SLE development through their control of energy generation, reactive oxygen species (ROS) production, and cellular apoptotic pathways. Dysregulation of mitochondrial structure and function can contribute to the immune dysregulation, oxidative stress, and inflammation seen in SLE. Recent research has highlighted the impact of mitochondrial dysfunction on various immune cells involved in SLE pathogenesis, such as T-lymphocytes, B-lymphocytes, neutrophils, and plasmacytoid dendritic cells. Mitochondrial dysfunction in these immune cells leads to increased ROS production, disrupted mitophagy, and alterations in energy metabolism, contributing to immune dysregulation and inflammation. Moreover, genetic variations in mitochondrial DNA (mtDNA) and abnormalities in mitochondrial dynamics have been linked to the pathogenesis of SLE, exacerbating oxidative stress and immune abnormalities. Targeting mitochondrial function has emerged as a promising therapeutic approach for SLE. Drugs such as sirolimus, N-acetylcysteine, coenzyme Q10, and metformin have shown potential in restoring mitochondrial homeostasis, reducing oxidative stress, and modulating immune responses in SLE. These agents have demonstrated efficacy in preclinical models and clinical studies by improving disease activity, reducing autoantibody titers, and ameliorating organ damage in SLE patients. In conclusion, this review underscores the critical role of mitochondria in the pathogenesis of SLE and the potential of targeting mitochondrial dysfunction as a novel therapeutic strategy for improving outcomes in SLE patients. Further investigation into the mechanisms underlying mitochondrial involvement in SLE and the development of targeted mitochondrial therapies hold promise for advancing SLE treatment and enhancing patient care.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Nikolay A Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexey V Churov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Russian Gerontology Clinical Research Centre, Institute on Aging Research, Pirogov Russian National Research Medical University, Russian Federation, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A Starodubtseva
- Department of Polyclinic Therapy, N.N. Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia
| | - Tatiana I Kovyanova
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Vasily N Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
7
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Hisada R, Kono M. Potential therapies targeting metabolic pathways in systemic lupus erythematosus. Clin Immunol 2024; 263:110224. [PMID: 38648959 DOI: 10.1016/j.clim.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The pathophysiology of systemic lupus erythematosus (SLE) is multifactorial and involves alterations in metabolic pathways, including glycolysis, lipid metabolism, amino acid metabolism, and mitochondrial dysfunction. Increased glycolysis in SLE T cells, which is associated with elevated glucose transporter 1 expression, suggests targeting glucose transporters and hexokinase as potential treatments. Abnormalities in lipid metabolism, particularly in lipid rafts and enzymes, present new therapeutic targets. This review discusses how changes in glutaminolysis and tryptophan metabolism affect T-cell function, suggesting new therapeutic interventions, as well as mitochondrial dysfunction in SLE, which increases reactive oxygen species. The review also emphasizes that modulating metabolic pathways in immune cells is a promising approach for SLE treatment, and can facilitate personalized therapies based on individual metabolic profiles of patients with SLE. The review provides novel insights into strategies for managing SLE.
Collapse
Affiliation(s)
- Ryo Hisada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
9
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
10
|
Du H, Su W, Su J, Hu J, Wu D, Long W, Zhu J. Sirolimus for the treatment of patients with refractory connective tissue disease-related thrombocytopenia: a pilot study. Rheumatology (Oxford) 2024; 63:79-84. [PMID: 37079730 DOI: 10.1093/rheumatology/kead160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVE CTD-related immune thrombocytopenia (CTD-ITP) represents an unmet medical need because the drugs that are available are only partly effective and have considerable side-effects. The aim of this study was to assess the efficacy and safety of sirolimus in refractory CTD-ITP patients. METHODS We did a single-arm, open-label, pilot study of sirolimus in patients with CTD-ITP unresponsive to, or intolerant of, conventional medications. Patients received oral sirolimus for 6 months at a starting dose of 0.5-1 mg per day, with dose adjusted according to tolerance and to maintain a therapeutic range of 6-15 ng/ml. The primary efficacy end point was changes in platelet count, and overall response assessed according to the ITP International Working Group Criteria. Safety outcomes included tolerance as assessed by the occurrence of common side-effects. RESULTS Between November 2020 and February 2022, 12 consecutively hospitalized patients with refractory CTD-ITP were enrolled and prospectively followed. Of these, six patients (50%) achieved complete response, two (16.7%) achieved partial response, and four (33.3%) were no response under therapy. Three of four patients with primary Sjögren's syndrome and two of three patients with systemic lupus erythematosus achieved overall response. One of two patients with overlapping Sjögren's syndrome and systemic lupus erythematosus achieved complete response at 6 months. No severe drug-related toxicities were observed. CONCLUSION Our results do support sirolimus as an alternative regimen for refractory CTD-ITP patients, including systemic lupus erythematosus and primary SS.
Collapse
Affiliation(s)
- Hongjia Du
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wei Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jiarui Hu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Dongze Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wubin Long
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
11
|
Huang H. Immunotherapeutic approaches for systemic lupus erythematosus: early overview and future potential. MEDICAL REVIEW (2021) 2023; 3:452-464. [PMID: 38282801 PMCID: PMC10808868 DOI: 10.1515/mr-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/16/2023] [Indexed: 01/30/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Current SLE therapies include immunosuppressants, antimalarial drugs, non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, but these treatments can cause substantial toxicities to organs and may not be effective for all patients. In recent years, significant progress has been made in the treatment of SLE using immunotherapy, including Benlysta and Saphnelo. These advances in immunotherapy hold promise for SLE patients, providing new therapeutic options that may offer better clinical benefit and effectiveness. Simultaneously, several new biological therapies focusing on cytokines, peptides, targeted antibodies, and cell-based approaches are under clinical evaluation and have shown immense potential for the treatment of SLE. However, the complexity of SLE immunopathogenesis and disease heterogeneity present significant challenges in the development of effective immunological therapies. This review aims to discuss past experiences and understanding of diverse immunological targeting therapies for SLE and highlight future perspectives for the development of novel immunological therapies.
Collapse
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Banic M, Pavlisa G, Hecimovic A, Grzelja J, Anic B, Samarzija M, Jankovic Makek M. Refractory systemic lupus erythematosus with chylous effusion successfully treated with sirolimus: a case report and literature review. Rheumatol Int 2023; 43:1743-1749. [PMID: 37326666 DOI: 10.1007/s00296-023-05363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Chylous effusion is a rare manifestation of systemic lupus erythematosus (SLE). When it does occur in SLE, it is generally well treated with standard pharmacologic or surgical measures. We present a decade of management in a case of SLE with lung affliction and development of refractory bilateral chylous effusion and pulmonary arterial hypertension (PAH). In the first years, the patient was treated under a Sjogren syndrome diagnose. After few years, her respiratory condition worsened due to chylous effusion and PAH. Immunosuppression therapy (methylprednisolone) was reintroduced, and vasodilator therapy commenced. With this, her cardiac function remained stable, but respiratory function continuously worsened despite several therapy trials with different combinations of immunosuppressant (glucocorticoids, resochin, cyclophosphamide and mycophenolate mofetil). On top of pleural effusion worsening, the patient developed ascites and severe hypoalbuminaemia. Even though albumin loss was stabilized with monthly octreotide applications, the patient remained respiratory insufficient and in need of continuous oxygen therapy. At that point, we decided to introduce sirolimus on top of glucocorticoids and mycophenolate mofetil therapy. Her clinical status, radiological finding, and lung function gradually improved and she became respiratory sufficient at rest. The patient remains in our follow-up and has been stable on given therapy for over 3 years despite overcoming a severe COVID-19 pneumonia in 2021. This case adds to the body of evidence of sirolimus effectiveness in patients with refractory systemic lupus and is, to our best knowledge, the first case to report its successful application in a patient with SLE and refractory chylous effusion.
Collapse
Affiliation(s)
- M Banic
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
| | - G Pavlisa
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
| | - A Hecimovic
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - J Grzelja
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - B Anic
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - M Samarzija
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - M Jankovic Makek
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia.
| |
Collapse
|
13
|
Neves A, Viveiros L, Venturelli V, Isenberg DA. Promising Experimental Treatments for Lupus Nephritis: Key Talking Points and Potential Opportunities. Res Rep Urol 2023; 15:333-353. [PMID: 37456804 PMCID: PMC10348374 DOI: 10.2147/rru.s385836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Lupus nephritis (LN) is a frequent and serious complication of systemic lupus erythematosus (SLE), impairing patients' quality of life and significantly increasing mortality. Despite optimizing the use of conventional immunosuppressants and other biological drugs, its management remains unsatisfactory. This is mainly due to the heterogeneity of SLE, but also to insufficiently effective treatment regimens and clinical trial limitations (strict criteria, low number of patients included, and side effects). Most clinical trials of new biological therapies have failed to meet their primary endpoints in both general SLE and LN, with only two biological drugs (belimumab and anifrolumab) being approved by the Food and Drug Administration (FDA) for the treatment of SLE. Recently, several Phase II randomized controlled trials have evaluated the efficacy and safety of new biologics in LN, and some of them have demonstrated an improvement in clinical and laboratory measures. Multi-target therapies are also being successfully developed and encourage a belief that there will be an improvement in LN outcomes.
Collapse
Affiliation(s)
- Ana Neves
- Internal Medicine Department, Centro Hospitalar Universitário de São João, Oporto, Portugal
| | - Luísa Viveiros
- Internal Medicine Department, Centro Hospitalar Universitário de Santo António, Oporto, Portugal
| | - Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - David A Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
| |
Collapse
|
14
|
Peres RAS, Peruchetti DB, Silva-Aguiar RP, Teixeira DE, Gomes CP, Takiya CM, Pinheiro AAS, Caruso-Neves C. Rapamycin treatment induces tubular proteinuria: role of megalin-mediated protein reabsorption. Front Pharmacol 2023; 14:1194816. [PMID: 37484026 PMCID: PMC10359992 DOI: 10.3389/fphar.2023.1194816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Rapamycin is an immunosuppressor that acts by inhibiting the serine/threonine kinase mechanistic target of rapamycin complex 1. Therapeutic use of rapamycin is limited by its adverse effects. Proteinuria is an important marker of kidney damage and a risk factor for kidney diseases progression and has been reported in patients and animal models treated with rapamycin. However, the mechanism underlying proteinuria induced by rapamycin is still an open matter. In this work, we investigated the effects of rapamycin on parameters of renal function and structure and on protein handling by proximal tubule epithelial cells (PTECs). Methods: Healthy BALB/c mice were treated with 1.5 mg/kg rapamycin by oral gavage for 1, 3, or 7 days. At the end of each treatment, the animals were kept in metabolic cages and renal function and structural parameters were analyzed. LLC-PK1 cell line was used as a model of PTECs to test specific effect of rapamycin. Results: Rapamycin treatment did not change parameters of glomerular structure and function. Conversely, there was a transient increase in 24-h proteinuria, urinary protein to creatinine ratio (UPCr), and albuminuria in the groups treated with rapamycin. In accordance with these findings, rapamycin treatment decreased albumin-fluorescein isothiocyanate uptake in the renal cortex. This effect was associated with reduced brush border expression and impaired subcellular distribution of megalin in PTECs. The effect of rapamycin seems to be specific for albumin endocytosis machinery because it did not modify renal sodium handling or (Na++K+)ATPase activity in BALB/c mice and in the LLC-PK1 cell line. A positive Pearson correlation was found between megalin expression and albumin uptake while an inverse correlation was shown between albumin uptake and UPCr or 24-h proteinuria. Despite its effect on albumin handling in PTECs, rapamycin treatment did not induce tubular injury measured by interstitial space and collagen deposition. Conclusion: These findings suggest that proteinuria induced by rapamycin could have a tubular rather than a glomerular origin. This effect involves a specific change in protein endocytosis machinery. Our results open new perspectives on understanding the undesired effect of proteinuria generated by rapamycin.
Collapse
Affiliation(s)
- Rodrigo A. S. Peres
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B. Peruchetti
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E. Teixeira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos P. Gomes
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- School of Medicine and Surgery, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Xu J, Yang C, Zeng S, Wang X, Yang P, Qin L. Disturbance of neuron-microglia crosstalk mediated by GRP78 in Neuropsychiatric systemic lupus erythematosus mice. J Neuroinflammation 2023; 20:150. [PMID: 37365565 DOI: 10.1186/s12974-023-02832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious phenotype of systemic lupus erythematosus (SLE). The disturbance of neuron-microglia crosstalk is recently revealed in many neuropsychiatric diseases but was not well studied in NPSLE. We found glucose regulatory protein 78 (GRP78), a marker of endoplasmic reticulum stress, was significantly increased in the cerebrospinal fluid (CSF) of our NPSLE cohort. We, therefore, investigated whether GRP78 can act as a mediator between the neuron-microglia crosstalk and is involved in the pathogenic process of NPSLE. METHODS Serum and CSF parameters were analyzed in 22 NPSLE patients and controls. Anti-DWEYS IgG was injected intravenously into mice to establish a model of NPSLE. Behavioral assessment, histopathological staining, RNA-seq analyses, and biochemical assays were performed to examine the neuro-immunological alterations in the mice. Rapamycin was intraperitoneally administered to define the therapeutic effect. RESULTS The level of GRP78 was elevated significantly in the CSF of the patients with NPSLE. An increase in GRP78 expression, accompanied by neuroinflammation and cognitive impairment, was also found in the brain tissues of the NPSLE model mice induced by anti-DWEYS IgG deposition on hippocampal neurons. In vitro experiments demonstrated that anti-DWEYS IgG could stimulate neurons to release GRP78, which activated microglia via TLR4/MyD88/NFκB pathway to produce more pro-inflammatory cytokines and promote migration and phagocytosis. Rapamycin ameliorated GRP78-inducing neuroinflammation and cognitive impairment in anti-DWEYS IgG-transferred mice. CONCLUSION GRP78 acts as a pathogenic factor in neuropsychiatric disorders via interfering neuron-microglia crosstalk. Rapamycin may be a promising therapeutic candidate for NPSLE.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Siyuan Zeng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xuejiao Wang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
16
|
Ding Y, Luan ZQ, Mao ZM, Qu Z, Yu F. Association between glomerular mTORC1 activation and crescents formation in lupus nephritis patients. Clin Immunol 2023; 249:109288. [PMID: 36907538 DOI: 10.1016/j.clim.2023.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
OBJECTIVE This study aims to explore the association between glomerular mammalian target of rapamycin complex 1 (mTORC1) pathway activation and crescents' degree in lupus nephritis (LN) patients. METHODS A total of 159 biopsy-proven LN patients were enrolled in this retrospective study. The clinical and pathological data of them were collected at the time of renal biopsy. mTORC1 pathway activation was measured by immunohistochemistry, expressed by the mean optical density (MOD) of p-RPS6 (ser235/236), and multiplexed immunofluorescence. The association of mTORC1 pathway activation with clinico-pathological features especially renal crescentic lesions, and the composite outcomes in LN patients was further analyzed. RESULTS mTORC1 pathway activation could be detected in the crescentic lesions and was positively correlated with the percentage of crescents (r = 0.479, P < 0.001) in LN patients. Subgroup analysis showed mTORC1 pathway was more activated in patients with cellular or fibrocellular crescentic lesions (P < 0.001), but not fibrous crescentic lesions (P = 0.270). The optimal cutoff value of the MOD of p-RPS6 (ser235/236) was 0.0111299 for predicting the presence of cellular-fibrocellular crescents in >7.39% of the glomeruli by the receiver operating characteristic curve. Cox regression survival analysis showed that mTORC1 pathway activation was an independent risk factor for the worse outcome (defined by composite endpoints of death, end-stage renal disease and a decrease of >30% in eGFR from baseline). CONCLUSION Activation of mTORC1 pathway was closely associated with the cellular-fibrocellular crescentic lesions and could be a prognostic marker in LN patients.
Collapse
Affiliation(s)
- Ying Ding
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Department of Nephrology, Peking University International Hospital, Beijing 102206, PR China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China
| | - Zhong-Qiu Luan
- Department of Nephrology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Zhao-Min Mao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China
| | - Zhen Qu
- Department of Nephrology, Peking University International Hospital, Beijing 102206, PR China.
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Department of Nephrology, Peking University International Hospital, Beijing 102206, PR China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China
| |
Collapse
|
17
|
Zhang M, Chong KK, Chen ZY, Guo H, Liu YF, Kang YY, Li YJ, Shi TT, Lai KK, He MQ, Ye K, Kahaly GJ, Shi BY, Wang Y. Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8:160377. [PMID: 36580373 PMCID: PMC9977423 DOI: 10.1172/jci.insight.160377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kelvin K.L. Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Science, The Prince of Wales Hospital, Hong Kong, China
| | - Zi-yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-feng Liu
- Biobank of The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong-yong Kang
- Genome Institute and,Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang-jun Li
- Department of Ophthalmology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Ting-ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kenneth K.H. Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Ming-qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Ye
- Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China.,School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China.,Faculty of Science, Leiden University, Leiden, Netherlands
| | - George J. Kahaly
- Molecular Thyroid Lab, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Bing-yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.,Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and
| |
Collapse
|
18
|
Okita Y, Yoshimura M, Katada Y, Saeki Y, Ohshima S. A mechanistic target of rapamycin inhibitor, everolimus safely ameliorated lupus nephritis in a patient complicated with tuberous sclerosis. Mod Rheumatol Case Rep 2023; 7:47-51. [PMID: 35512453 DOI: 10.1093/mrcr/rxac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
Abstract
A 26-year-old woman with tuberous sclerosis complex (TSC) received outpatient treatment for the complication of systemic lupus erythematosus (SLE) at our hospital. She visited our hospital with a chief complaint of pitting oedema in bilateral lower legs for 3 days. The urinalysis showed massive proteinuria with a lot of white blood cell casts. The blood tests revealed hypoalbuminaemia, hypercholesterolaemia, hypocomplementaemia, and elevated anti-double-stranded DNA antibody titre. Renal biopsy was not performed because of multiple renal angiomyolipomas, which was one of the features of TSC. She was diagnosed with a nephrotic state due to lupus nephritis. Although she had a standard therapy with high-dose corticosteroid and mycophenolate mofetil and tacrolimus, complete remission had not been achieved leading to a steroid-dependent nephrotic syndrome. During the follow-up, the angiomyolipomas became larger and had a risk of rupture at the age of 29 years. Everolimus, a mechanistic target of rapamycin (mTOR) inhibitor, was started for the treatment of angiomyolipomas, and mycophenolate mofetil and tacrolimus were terminated instead. The activity of lupus nephritis was surprisingly ameliorated, and the amount of corticosteroid successfully tapered. Everolimus has been continued for 6 years without severe side effects. Accumulating evidence suggests that the activated mTOR pathway plays a key role in the pathogenesis of SLE. We reported the long-term efficacy and safety of everolimus for refractory SLE in a patient with TSC for the first time. This case suggests that everolimus can be a promising option for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Yasutaka Okita
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Maiko Yoshimura
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan
| | - Yoshinori Katada
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan.,Department of Respiratory Medicine and Rheumatology, Suita Municipal Hospital, Suita, Japan
| | - Yukihiko Saeki
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan.,Department of Clinical Research, NHO Osaka Minami Medical Center, Kawachinagano, Japan
| | - Shiro Ohshima
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan.,Department of Clinical Research, NHO Osaka Minami Medical Center, Kawachinagano, Japan
| |
Collapse
|
19
|
Doglio M, Alexander T, Del Papa N, Snowden JA, Greco R. New insights in systemic lupus erythematosus: From regulatory T cells to CAR-T-cell strategies. J Allergy Clin Immunol 2022; 150:1289-1301. [PMID: 36137815 DOI: 10.1016/j.jaci.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematous is a heterogeneous autoimmune disease with potentially multiorgan damage. Its complex etiopathogenesis involves genetic, environmental, and hormonal factors, leading to a loss of self-tolerance with autoantibody production and immune complex formation. Given the relevance of autoreactive B lymphocytes, several therapeutic approaches have been made targeting these cells. However, the disease remains incurable, reflecting an unmet need for effective strategies. Novel therapeutic concepts have been investigated to provide more specific and sustainable disease modification compared with continued immunosuppression. Autologous hematopoietic stem cell transplantation has already provided the proof-of-concept that immunodepletion can lead to durable treatment-free remissions, albeit with significant treatment-related toxicity. In the future, chimeric antigen receptor-T-cell therapies, for example, CD19 chimeric antigen receptor-T, may provide a more effective lymphodepletion and with less toxicity than autologous hematopoietic stem cell transplantation. An emerging field is to enhance immune tolerance by exploiting the suppressive capacities of regulatory T cells, which are dysfunctional in patients with systemic lupus erythematous, and thus resemble promising candidates for adoptive cell therapy. Different approaches have been developed in this area, from polyclonal to genetically engineered regulatory T cells. In this article, we discuss the current evidence and future directions of cellular therapies for the treatment of systemic lupus erythematous, including hematopoietic stem cell transplantation and advanced regulatory T-cell-based cellular therapies.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Hematology Unit, Department of Immunology Transplantations and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Unit of Pediatric Immunohematology, San Raffaele Hospital, Milan, Italy
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | | | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, United Kingdom
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Mila, Italy.
| |
Collapse
|
20
|
Zhang L, Cui JY, Zhang L. Clinical efficacy and safety of sirolimus in childhood-onset systemic lupus erythematosus in real world. Medicine (Baltimore) 2022; 101:e31551. [PMID: 36401486 PMCID: PMC9678567 DOI: 10.1097/md.0000000000031551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To investigate the effectiveness and safety of sirolimus in childhood-onset systemic lupus erythematosus in a real world. This is a retrospective real world clinical study. All childhood-onset systemic lupus erythematosus patients treated with sirolimus in Children's Hospital of Hebei Province China were analyzed. They were treated with sirolimus and followed up regularly. The patients had systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) score, levels of antidouble-stranded DNA antibody, complement components C3 and C4, 24-hour proteinuria and corticosteroid reduction were recorded at baseline and at 6, 12, and 18 months. Adverse events were also collected. Thirty-two patients were enrolled in the study. SLEDAI-2K were improved on all time-points (P < .05). Complement levels increased and the levels of antidouble-stranded DNA antibody decreased during treatment. The mean dose of prednisone tapered and achieved significant reduction after 12 months therapy (15.4 ± 5.8 mg/d to 4.8 ± 2.1 mg/d; P < .05). Sirolimus was well tolerated and only 5 patients (15.6%) experienced adverse events, all of which were classified as infections (2 bacterial infection and 3 viral infections). No deaths, severe infusion reactions, or hypersensitivity reactions were found. Sirolimus use was associated with a decrease in disease activity and ability to tolerate tapering of oral glucocorticoid dose with a favorable risk-benefit profile.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pediatric, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology and Immunology, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Jie-Yuan Cui
- Department of Nephrology and Immunology, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Lin Zhang
- Department of Nephrology and Immunology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- *Correspondence: Lin Zhang, Department of Nephrology and Immunology, Children’s Hospital of Hebei Province, Shijiazhuang 050031, China (e-mail: )
| |
Collapse
|
21
|
Abstract
INTRODUCTION Lupus nephritis (LN) is a key predictor for kidney failure and death in patients with systemic lupus erythematosus (SLE). While conventional immunosuppressive treatments have improved the outcome of LN, novel therapies continue to emerge. These new agents target specific immune-reactive cells (B cell repertoire or T lymphocytes) and crucial cytokines/signalling pathways in LN pathogenesis. AREAS COVERED New therapeutic approaches that target specific immune-reactive cells (B cell repertoire or T lymphocytes), crucial cytokines and their signalling pathways in LN pathogenesis. EXPERT OPINION Although earlier studies of rituximab fail to show benefit, a newer generation anti-CD20 biologic, obinutuzumab, is promising in LN. Inhibition of B-cell activating factor by belimumab confers superior renal response when added to the standard of care (SOC) regimens, leading to its recent approval for LN. Therapies targeting plasma cells (proteasome inhibitors, anti-CD38) in LN are being developed. A newer generation calcineurin inhibitor, voclosporin, when combined with SOC, results in better renal responses in LN. Other innovative strategies include targeting type I interferon, co-stimulatory signals, complement cascade (anti-C5b) and intracellular proliferation signals (e.g. mTOR, JAK1/2, BTK). While these novel agents improve the short-term renal responses without increased toxicities, long-term data on disease progression and safety remain to be established. Patient stratification by clinical phenotypes, biomarkers and molecular profiles helps enhance the efficacy and cost-effectiveness of novel therapies of LN.
Collapse
Affiliation(s)
| | - Chi Chiu Mok
- Division of Rheumatology, Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong
| |
Collapse
|
22
|
Wang DD, Li YF, Zhang C, He SM, Chen X. Predicting the effect of sirolimus on disease activity in patients with systemic lupus erythematosus using machine learning. J Clin Pharm Ther 2022; 47:1845-1850. [PMID: 36131617 DOI: 10.1111/jcpt.13778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES The present study aimed to predict the effect of sirolimus on disease activity in patients with systemic lupus erythematosus (SLE) using machine learning and to recommend appropriate sirolimus dosage regimen for patients with SLE. METHODS The Emax model was selected for machine learning, where the evaluation indicator was the change rate of systemic lupus erythematosus disease activity index from baseline value. RESULTS A total 103 patients with SLE were included for modelling, where the Emax , ET50 were -53.9%, 1.53 months in the final model respectively, and the evaluation of the final model was good. Further simulation found that the follow-up time to achieve 25%, 50%, 75% and 80% (plateau) Emax of sirolimus effecting on disease activity in patients with SLE were 0.51, 1.53, 4.59 and 6.12 months, respectively. In addition, the sirolimus dosage was flexible and adjusted according to drug concentration, where the intersection of sirolimus concentration range included in this study was about 8-10 ng/ml. WHAT IS NEW AND CONCLUSIONS This study was the first time to predict the effect of sirolimus on disease activity in patients with SLE and in order to achieve better therapeutic effect maintaining a concentration of 8-10 ng/ml sirolimus for at least 6.12 months was necessary.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ya-Feng Li
- Department of Pharmacy, Feng Xian People's Hospital, Xuzhou, Jiangsu, China
| | - Cun Zhang
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Jianing W, Jingyi X, Pingting Y. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J Autoimmun 2022; 132:102892. [PMID: 36030137 DOI: 10.1016/j.jaut.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently suffer from nervous system complications, termed neuropsychiatric lupus erythematosus (NPLE). NPLE accounts for the poor prognosis of SLE. Correct attribution of NP events to SLE is the primary principle in managing NPLE. The vascular injuries and neuroinflammation are the fundamental neuropathologic changes in NPLE. Specific autoantibody-mediated central nerve system (CNS) damages distinguish NPLE from other CNS disorders. Though the central antibodies in NPLE are generally thought to be raised from the periphery immune system, they may be produced in the meninges and choroid plexus. On this basis, abnormal activation of microglia and disease-associated microglia (DAM) should be the common mechanisms of NPLE and other CNS disturbances. Improved understanding of both characteristic and sharing features of NPLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Wang Jianing
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xu Jingyi
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yang Pingting
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
24
|
Sorrenti V, Benedetti F, Buriani A, Fortinguerra S, Caudullo G, Davinelli S, Zella D, Scapagnini G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals (Basel) 2022; 15:ph15080912. [PMID: 35893737 PMCID: PMC9394378 DOI: 10.3390/ph15080912] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Aging results from the progressive dysregulation of several molecular pathways and mTOR and AMPK signaling have been suggested to play a role in the complex changes in key biological networks involved in cellular senescence. Moreover, multiple factors, including poor nutritional balance, drive immunosenescence progression, one of the meaningful aspects of aging. Unsurprisingly, nutraceutical and pharmacological interventions could help maintain an optimal biological response by providing essential bioactive micronutrients required for the development, maintenance, and the expression of the immune response at all stages of life. In this regard, many studies have provided evidence of potential antiaging properties of resveratrol, as well as rapamycin and metformin. Indeed, in vitro and in vivo models have demonstrated for these molecules a number of positive effects associated with healthy aging. The current review focuses on the mechanisms of action of these three important compounds and their suggested use for the clinical treatment of immunosenescence and aging.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Egidio Meneghetti, 2, 35131 Padova, Italy
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | - Alessandro Buriani
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | | | - Giada Caudullo
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Correspondence: (V.S.); (D.Z.); (G.S.)
| |
Collapse
|
25
|
Podestà MA, Faravelli I, Ponticelli C. Autophagy in lupus nephritis: A delicate balance between regulation and disease. Clin Exp Rheumatol 2022; 21:103132. [PMID: 35690243 DOI: 10.1016/j.autrev.2022.103132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Autophagy is a highly regulated process wherein an unwanted cargo of damaged and dysfunctional cytoplasmic components is removed, delivered to lysosomes for degradation, and released back into the cytoplasm. Accumulating evidence suggests an important role of autophagy in the pathophysiology of systemic lupus erythematosus, with profound effects on both innate and adaptive immunity. Autophagy downregulation results in the inhibition of antigen presenting cells, reduced release of neutrophil extracellular traps and decreased activation of effector T and B cells, leading to reduced autoantibody production and attenuated type 1 interferon signaling. However, defective autophagy may accelerate the production of other inflammatory cytokines and reduce the clearance of apoptotic cells, promoting lupus development. In addition, autophagy dysfunction can concur to the pathogenesis of kidney injury in lupus nephritis. Autophagy is a pivotal mechanism to maintain podocyte integrity and endothelial cell survival. Several animal models have demonstrated that defective autophagy leads to podocyte injury and can promote an endothelial pro-inflammatory and atherogenic phenotype. Moreover, autophagy is a key homeostatic regulator of renal tubular cells, and recent evidence has pointed out that chronic autophagy deficiency may accelerate kidney fibrosis. Targeting autophagy may theoretically improve lupus nephritis outcomes, but novel, non-invasive methods to measure and monitor autophagic activity are urgently needed. In addition, the extent and timing of autophagy inhibition still require additional studies before clinical translation may be attempted. In this review, we will also discuss the effect of several clinically available drugs that can regulate the autophagic flux and their effect in lupus nephritis patients.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Renal Division, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy.
| | - Irene Faravelli
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | | |
Collapse
|
26
|
Zhang D, Sun F, Ye S. Successful treatment of sirolimus in a Chinese patient with refractory LN and APS: a case report. Ther Adv Musculoskelet Dis 2022; 14:1759720X221079253. [PMID: 35251323 PMCID: PMC8891858 DOI: 10.1177/1759720x221079253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
It has been reported that the mammalian target of rapamycin (mTOR) pathway is involved in the pathogenesis of systemic lupus erythematosus (SLE), and increasing evidence has shown the effect of mTOR-targeted therapies with sirolimus in SLE. The objective of this study was to report the successful treatment of sirolimus in a Chinese patient with refractory lupus nephritis (LN) and anti-phospholipid antibody syndrome (APS). A 44-year-old female with a previous diagnosis of autoimmune hemolytic anemia (AIHA) and APS secondary to SLE presented with lupus nephritis refractory to cyclophosphamide and mycophenolate. Renal biopsy met the criteria of WHO class III LN complicated by acute tubular injury and immunofluorescence confirmed the activation of the mTOR pathway. Treatment with the mTOR inhibitor sirolimus was initiated in this patient. Complete remission (CR) was achieved after 6 months, and flare-free remission was maintained for the next 3.5 years. The literature on the efficacy of sirolimus in patients with LN was reviewed. Although the available evidence is limited to retrospective studies with small sample sizes, sirolimus appeared to be efficacious in some patients with refractory LN. Well-designed clinical trials are warranted, and pathology-guided precision medicine might assist in guiding physicians’ treatment decisions.
Collapse
Affiliation(s)
- Danting Zhang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Sun
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 2000 Jiangyue Road, Shanghai, 201112, China
| |
Collapse
|
27
|
Jiang N, Li M, Zhang H, Duan X, Li X, Fang Y, Li H, Yang P, Luo H, Wang Y, Peng L, Zhao J, Wu C, Wang Q, Tian X, Zhao Y, Zeng X. Sirolimus versus tacrolimus for systemic lupus erythematosus treatment: results from a real-world CSTAR cohort study. Lupus Sci Med 2022; 9:9/1/e000617. [PMID: 34980680 PMCID: PMC8724817 DOI: 10.1136/lupus-2021-000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The effectiveness and safety of sirolimus for SLE treatment have been shown in some uncontrolled studies. However, a comparison of sirolimus with other classic immunosuppressants has not been reported. We conducted the study to compare the effectiveness and safety of sirolimus versus tacrolimus for SLE treatment. METHODS A real-world cohort study was conducted. Patients with clinically active SLE who were prescribed sirolimus or tacrolimus were enrolled. Propensity score matching was used to ensure equivalent disease conditions and background medications. SLE disease activity indices, serological parameters, steroid doses, modification of other immunosuppressants, renal effectiveness and adverse events were compared between the two groups at 3-month, 6-month, 9-month and 12-month follow-up visits. RESULTS Data from 52 patients in each of the sirolimus and tacrolimus groups were analysed. Indices regarding the effectiveness of sirolimus, including Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) scores, physician's global assessment (PhGA) scores, and proportion of patients with SLEDAI-2K reduction of ≥4 and PhGA increase of <0.3, were equivalent to those of tacrolimus at all follow-up timepoints (all p≥0.05). Greater improvements in complement levels were observed in the sirolimus group at 3 and 6 months. Higher percentages of patients with prednisone doses ≤7.5 mg/day were observed in the sirolimus group at all timepoints. Seventeen adverse events in the sirolimus group were recorded. None was severe or led to drug discontinuation. CONCLUSIONS Overall, sirolimus was as effective as tacrolimus in the treatment of SLE. Sirolimus had better effects on serological improvement and glucocorticoid tapering. Sirolimus was well tolerated in patients with SLE.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China .,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Hongfeng Zhang
- Department of Rheumatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinwang Duan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yongfei Fang
- Department of Rheumatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongbin Li
- Department of Rheumatology, The Affiliated Hospital of Inner Mongolia Medical College, Hohhot, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liying Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China .,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
28
|
miR-20a Overexpression in Adipose-Derived Mesenchymal Stem Cells Promotes Therapeutic Efficacy in Murine Lupus Nephritis by Regulating Autophagy. Stem Cells Int 2021; 2021:3746335. [PMID: 34721589 PMCID: PMC8553505 DOI: 10.1155/2021/3746335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Lupus nephritis is the most common and severe complication of systemic lupus erythematosus. The aim of our study was to investigate the efficacy of miR-20a overexpressing adipose-derived stem cell (ADSC) transplantation in murine lupus nephritis (LN) and explore potential molecular mechanisms. Methods Mouse ADSCs were transfected with a miR-20a lentiviral vector to obtain miR-20a overexpression ADSCs (miR-20a-ADSCs). We first observed the influence of miR-20a on ADSC viability and apoptosis in vitro. B6.MRL/lpr mice were administered ADSC/miR-20a-ADSC intravenously every week from age 30 to 33 weeks, and the lupus and normal control groups received PBS on the same schedule. Results miR-20a expression increased in miR-20a-ADSC-derived exosomes, and miR-20a overexpression promoted ADSC proliferation and inhibited apoptosis. Compared with ADSCs, miR-20a-ADSC treatment significantly improved serologic and histologic abnormalities, as evidenced by reduced serum creatinine, anti-dsDNA antibody, 24 h urine protein levels, nephritis scores, and C3/IgG deposits. Furthermore, miR-20a-ADSC treatment resulted in downregulated Akt, mTOR, and p62 expression and upregulated miR-20a, Beclin 1, and LC3 II/I expression compared with ADSC treatment. After treatment with miR-20a-ADSC, a significant increase in the number of autophagosomes within podocytes was observed, along with upregulated expression of podocin and nephrin, compared with the ADSC group. Conclusions miR-20a-ADSC transplantation prevents the development of lupus nephritis and significantly ameliorates already-established disease, and its mechanism is related to autophagy by targeting the miR-20a-regulated mTOR pathway.
Collapse
|
29
|
Piranavan P, Perl A. Improvement of renal and non-renal SLE outcome measures on sirolimus therapy - A 21-year follow-up study of 73 patients. Clin Immunol 2021; 229:108781. [PMID: 34144197 PMCID: PMC9240417 DOI: 10.1016/j.clim.2021.108781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
The safety, tolerance, and selected renal and non-renal outcome measures were evaluated in 73 SLE patients who received sirolimus therapy for more than 3 months in our institution over the past 21 years. In 12 patients who had lupus nephritis, proteinuria (p = 0.0287), hematuria (p = 0.0232), anti-DNA antibody levels (p = 0.0028) and steroid use were reduced (p = 0.0200). In the non-renal cohort of 61 patients, anti-DNA antibody levels (p = 0.0332) and steroid use were reduced (p = 0.0163). Both in the renal and non-renal cohorts, C3 (renal p = 0.0070; non-renal p = 0.0021) and C4 complement levels were increased (renal p = 0.0063; non-renal p = 0.0042) Adverse effects of mouth sores (2/73), headaches (1/73), and gastrointestinal discomfort were noted in a minority of patients (6/73). Sirolimus was only discontinued in two of 73 patients due to headache and recurrent infections, respectively. This study suggests that sirolimus is well tolerated and exerts long-term therapeutic efficacy in controlling renal and non-renal manifestations of SLE.
Collapse
Affiliation(s)
- Paramarajan Piranavan
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.
| |
Collapse
|