1
|
Messica S, Presil D, Hoch Y, Lev T, Hadad A, Katz O, Owens DR. Enhancing stroke risk and prognostic timeframe assessment with deep learning and a broad range of retinal biomarkers. Artif Intell Med 2024; 154:102927. [PMID: 38991398 DOI: 10.1016/j.artmed.2024.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Stroke stands as a major global health issue, causing high death and disability rates and significant social and economic burdens. The effectiveness of existing stroke risk assessment methods is questionable due to their use of inconsistent and varying biomarkers, which may lead to unpredictable risk evaluations. This study introduces an automatic deep learning-based system for predicting stroke risk (both ischemic and hemorrhagic) and estimating the time frame of its occurrence, utilizing a comprehensive set of known retinal biomarkers from fundus images. Our system, tested on the UK Biobank and DRSSW datasets, achieved AUROC scores of 0.83 (95% CI: 0.79-0.85) and 0.93 (95% CI: 0.9-0.95), respectively. These results not only highlight our system's advantage over established benchmarks but also underscore the predictive power of retinal biomarkers in assessing stroke risk and the unique effectiveness of each biomarker. Additionally, the correlation between retinal biomarkers and cardiovascular diseases broadens the potential application of our system, making it a versatile tool for predicting a wide range of cardiovascular conditions.
Collapse
Affiliation(s)
| | - Dan Presil
- NEC Israeli Research Center, Herzliya, Israel
| | - Yaacov Hoch
- NEC Israeli Research Center, Herzliya, Israel
| | - Tsvi Lev
- NEC Israeli Research Center, Herzliya, Israel
| | - Aviel Hadad
- Ophthalmology Department, Soroka University Medical Center, Be'er Sheva, South District, Israel
| | - Or Katz
- NEC Israeli Research Center, Herzliya, Israel
| | - David R Owens
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
2
|
Parmar UPS, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:527. [PMID: 38674173 PMCID: PMC11052176 DOI: 10.3390/medicina60040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Artificial intelligence (AI) has emerged as a transformative tool in the field of ophthalmology, revolutionizing disease diagnosis and management. This paper provides a comprehensive overview of AI applications in various retinal diseases, highlighting its potential to enhance screening efficiency, facilitate early diagnosis, and improve patient outcomes. Herein, we elucidate the fundamental concepts of AI, including machine learning (ML) and deep learning (DL), and their application in ophthalmology, underscoring the significance of AI-driven solutions in addressing the complexity and variability of retinal diseases. Furthermore, we delve into the specific applications of AI in retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), Macular Neovascularization, retinopathy of prematurity (ROP), retinal vein occlusion (RVO), hypertensive retinopathy (HR), Retinitis Pigmentosa, Stargardt disease, best vitelliform macular dystrophy, and sickle cell retinopathy. We focus on the current landscape of AI technologies, including various AI models, their performance metrics, and clinical implications. Furthermore, we aim to address challenges and pitfalls associated with the integration of AI in clinical practice, including the "black box phenomenon", biases in data representation, and limitations in comprehensive patient assessment. In conclusion, this review emphasizes the collaborative role of AI alongside healthcare professionals, advocating for a synergistic approach to healthcare delivery. It highlights the importance of leveraging AI to augment, rather than replace, human expertise, thereby maximizing its potential to revolutionize healthcare delivery, mitigate healthcare disparities, and improve patient outcomes in the evolving landscape of medicine.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Romano
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
3
|
Gomes RFT, Schmith J, de Figueiredo RM, Freitas SA, Machado GN, Romanini J, Almeida JD, Pereira CT, Rodrigues JDA, Carrard VC. Convolutional neural network misclassification analysis in oral lesions: an error evaluation criterion by image characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:243-252. [PMID: 38161085 DOI: 10.1016/j.oooo.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This retrospective study analyzed the errors generated by a convolutional neural network (CNN) when performing automated classification of oral lesions according to their clinical characteristics, seeking to identify patterns in systemic errors in the intermediate layers of the CNN. STUDY DESIGN A cross-sectional analysis nested in a previous trial in which automated classification by a CNN model of elementary lesions from clinical images of oral lesions was performed. The resulting CNN classification errors formed the dataset for this study. A total of 116 real outputs were identified that diverged from the estimated outputs, representing 7.6% of the total images analyzed by the CNN. RESULTS The discrepancies between the real and estimated outputs were associated with problems relating to image sharpness, resolution, and focus; human errors; and the impact of data augmentation. CONCLUSIONS From qualitative analysis of errors in the process of automated classification of clinical images, it was possible to confirm the impact of image quality, as well as identify the strong impact of the data augmentation process. Knowledge of the factors that models evaluate to make decisions can increase confidence in the high classification potential of CNNs.
Collapse
Affiliation(s)
- Rita Fabiane Teixeira Gomes
- Department of Oral Pathology, Faculdade de Odontologia-Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.
| | - Jean Schmith
- Polytechnic School, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil; Technology in Automation and Electronics Laboratory-TECAE Lab, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Rodrigo Marques de Figueiredo
- Polytechnic School, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil; Technology in Automation and Electronics Laboratory-TECAE Lab, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Samuel Armbrust Freitas
- Department of Applied Computing, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | | | - Juliana Romanini
- Oral Medicine, Otorhynolaringology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnostics, São Paulo State University, Campus São José dos Campos, São Paulo, Brazil
| | | | - Jonas de Almeida Rodrigues
- Department of Surgery and Orthopaedics, Faculdade de Odontologia-Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Vinicius Coelho Carrard
- Department of Oral Pathology, Faculdade de Odontologia-Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil; TelessaudeRS-UFRGS, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Oral Medicine, Otorhynolaringology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Liu YF, Ji YK, Fei FQ, Chen NM, Zhu ZT, Fei XZ. Research progress in artificial intelligence assisted diabetic retinopathy diagnosis. Int J Ophthalmol 2023; 16:1395-1405. [PMID: 37724288 PMCID: PMC10475636 DOI: 10.18240/ijo.2023.09.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 09/20/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide. Early detection and treatment can effectively delay vision decline and even blindness in patients with DR. In recent years, artificial intelligence (AI) models constructed by machine learning and deep learning (DL) algorithms have been widely used in ophthalmology research, especially in diagnosing and treating ophthalmic diseases, particularly DR. Regarding DR, AI has mainly been used in its diagnosis, grading, and lesion recognition and segmentation, and good research and application results have been achieved. This study summarizes the research progress in AI models based on machine learning and DL algorithms for DR diagnosis and discusses some limitations and challenges in AI research.
Collapse
Affiliation(s)
- Yun-Fang Liu
- Department of Ophthalmology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Yu-Ke Ji
- Eye Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Fang-Qin Fei
- Department of Endocrinology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Nai-Mei Chen
- Department of Ophthalmology, Huai'an Hospital of Huai'an City, Huai'an 223000, Jiangsu Province, China
| | - Zhen-Tao Zhu
- Department of Ophthalmology, Huai'an Hospital of Huai'an City, Huai'an 223000, Jiangsu Province, China
| | - Xing-Zhen Fei
- Department of Endocrinology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
5
|
Gomes RFT, Schuch LF, Martins MD, Honório EF, de Figueiredo RM, Schmith J, Machado GN, Carrard VC. Use of Deep Neural Networks in the Detection and Automated Classification of Lesions Using Clinical Images in Ophthalmology, Dermatology, and Oral Medicine-A Systematic Review. J Digit Imaging 2023; 36:1060-1070. [PMID: 36650299 PMCID: PMC10287602 DOI: 10.1007/s10278-023-00775-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Artificial neural networks (ANN) are artificial intelligence (AI) techniques used in the automated recognition and classification of pathological changes from clinical images in areas such as ophthalmology, dermatology, and oral medicine. The combination of enterprise imaging and AI is gaining notoriety for its potential benefits in healthcare areas such as cardiology, dermatology, ophthalmology, pathology, physiatry, radiation oncology, radiology, and endoscopic. The present study aimed to analyze, through a systematic literature review, the application of performance of ANN and deep learning in the recognition and automated classification of lesions from clinical images, when comparing to the human performance. The PRISMA 2020 approach (Preferred Reporting Items for Systematic Reviews and Meta-analyses) was used by searching four databases of studies that reference the use of IA to define the diagnosis of lesions in ophthalmology, dermatology, and oral medicine areas. A quantitative and qualitative analyses of the articles that met the inclusion criteria were performed. The search yielded the inclusion of 60 studies. It was found that the interest in the topic has increased, especially in the last 3 years. We observed that the performance of IA models is promising, with high accuracy, sensitivity, and specificity, most of them had outcomes equivalent to human comparators. The reproducibility of the performance of models in real-life practice has been reported as a critical point. Study designs and results have been progressively improved. IA resources have the potential to contribute to several areas of health. In the coming years, it is likely to be incorporated into everyday life, contributing to the precision and reducing the time required by the diagnostic process.
Collapse
Affiliation(s)
- Rita Fabiane Teixeira Gomes
- Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Barcelos 2492/503, Bairro Santana, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Lauren Frenzel Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Manoela Domingues Martins
- Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Barcelos 2492/503, Bairro Santana, Porto Alegre, RS, CEP 90035-003, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Rodrigo Marques de Figueiredo
- Technology in Automation and Electronics Laboratory - TECAE Lab, University of Vale Do Rio Dos Sinos - UNISINOS, São Leopoldo, Brazil
| | - Jean Schmith
- Technology in Automation and Electronics Laboratory - TECAE Lab, University of Vale Do Rio Dos Sinos - UNISINOS, São Leopoldo, Brazil
| | - Giovanna Nunes Machado
- Technology in Automation and Electronics Laboratory - TECAE Lab, University of Vale Do Rio Dos Sinos - UNISINOS, São Leopoldo, Brazil
| | - Vinicius Coelho Carrard
- Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Barcelos 2492/503, Bairro Santana, Porto Alegre, RS, CEP 90035-003, Brazil
- Department of Epidemiology, School of Medicine, TelessaúdeRS-UFRGS, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Department of Oral Medicine, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Ji Y, Ji Y, Liu Y, Zhao Y, Zhang L. Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images. Front Cell Dev Biol 2023; 11:1168327. [PMID: 37056999 PMCID: PMC10086262 DOI: 10.3389/fcell.2023.1168327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
As the only blood vessels that can directly be seen in the whole body, pathological changes in retinal vessels are related to the metabolic state of the whole body and many systems, which seriously affect the vision and quality of life of patients. Timely diagnosis and treatment are key to improving vision prognosis. In recent years, with the rapid development of artificial intelligence, the application of artificial intelligence in ophthalmology has become increasingly extensive and in-depth, especially in the field of retinal vascular diseases. Research study results based on artificial intelligence and fundus images are remarkable and provides a great possibility for early diagnosis and treatment. This paper reviews the recent research progress on artificial intelligence in retinal vascular diseases (including diabetic retinopathy, hypertensive retinopathy, retinal vein occlusion, retinopathy of prematurity, and age-related macular degeneration). The limitations and challenges of the research process are also discussed.
Collapse
Affiliation(s)
- Yuke Ji
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Ji
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunfang Liu
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Zhao
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Liya Zhang, ; Ying Zhao,
| | - Liya Zhang
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
- *Correspondence: Liya Zhang, ; Ying Zhao,
| |
Collapse
|
7
|
Yang Y, Pan J, Yuan M, Lai K, Xie H, Ma L, Xu S, Deng R, Zhao M, Luo Y, Lin X. Performance of the AIDRScreening system in detecting diabetic retinopathy in the fundus photographs of Chinese patients: a prospective, multicenter, clinical study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1088. [PMID: 36388839 PMCID: PMC9652560 DOI: 10.21037/atm-22-350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Background Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population worldwide, and there is a large unmet need for DR screening in China. This observational, prospective, multicenter, gold standard-controlled study sought to evaluate the effectiveness and safety of the AIDRScreening system (v. 1.0), which is an artificial intelligence (AI)-enabled system that detects DR in the Chinese population based on fundus photographs. Methods Participants with diabetes mellitus (DM) were recruited. Fundus photographs (field 1 and field 2) of 1 eye in each participant were graded by the AIDRScreening system (v. 1.0) to detect referable DR (RDR). The results were compared to those of the masked manual grading (gold standard) system by the Zhongshan Image Reading Center. The primary outcomes were the sensitivity and specificity of the AIDRScreening system in detecting RDR. The other outcomes evaluated included the system's diagnostic accuracy, positive predictive value, negative predictive value, diagnostic accuracy gain rate, and average diagnostic time gain rate. Results Among the 1,001 enrolled participants with DM, 962 (96.1%) were included in the final analyses. The participants had a median age of 60.61 years (range: 20.18-85.78 years), and 48.2% were men. The manual grading system detected RDR in 399 (41.48%) participants. The AIDRScreening system had a sensitivity of 86.72% (95% CI: 83.39-90.05%) and a specificity of 96.09% (95% CI: 94.14-97.54%) in the detection of RDR, and a false-positive rate of 3.91%. The diagnostic accuracy gain rate of the AIDRScreening system was 16.57% higher than that of the investigator, while the average diagnostic time gain rate was -37.32% lower. Conclusions The automated AIDRScreening system can detect RDR with high accuracy, but cannot detect maculopathy. The implementation of the AIDRScreening system may increase the efficiency of DR screening.
Collapse
Affiliation(s)
- Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Miner Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huirui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Suzhong Xu
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruzhi Deng
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital, Beijing, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|