1
|
Makker A, Goel MM, Mahdi AA, Bhatia V, Das V, Agarwal A, Pandey A. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas. Indian J Med Res 2017; 143:S112-S119. [PMID: 27748285 PMCID: PMC5080920 DOI: 10.4103/0971-5916.191808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background & objectives: Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Methods: Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Results: Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P=0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (P<0.001) and decreased expression of VEGFA (P=0.01) was observed in leiomyoma as compared to myometrium. Immunostaining for activated (phosphorylated) Akt, mTOR and S6 was absent or low in majority of leiomyoma and myometrium. Interpretation & conclusions: Upregulation of PTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma.
Collapse
Affiliation(s)
- Annu Makker
- Post-Graduate Department of Pathology, King George's Medical University, Lucknow, India
| | - Madhu Mati Goel
- Post-Graduate Department of Pathology, King George's Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Vikram Bhatia
- Post-Graduate Department of Pathology, King George's Medical University, Lucknow, India
| | - Vinita Das
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, India
| | - Anjoo Agarwal
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, India
| | - Amita Pandey
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, India
| |
Collapse
|
2
|
Holdsworth-Carson SJ, Zhao D, Cann L, Bittinger S, Nowell CJ, Rogers PAW. Differences in the cellular composition of small versus large uterine fibroids. Reproduction 2016; 152:467-80. [PMID: 27528771 DOI: 10.1530/rep-16-0216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/15/2016] [Indexed: 12/19/2022]
Abstract
Uterine fibroids are clonally derived from a single cell; however, despite being monoclonal, the cellular phenotypes that make up uterine fibroids are heterogeneous consisting of predominantly smooth muscle cells (SMC) and fibroblasts. This raises the question as to when clonal cell differentiation occurs during fibroid development, and does this information provide clues about possible mechanisms regulating the growth process that leads to fibroids of symptom-causing size? This study investigated the differences in the cellular composition of fibroids by immunohistochemistry (IHC). A tissue microarray (n = 21 hysterectomy cases) was used for the investigation of large uterine fibroids and normal myometrium. An investigation of small fibroids (≤ 5mm) used a separate group of samples (n = 7 hysterectomy cases, total of n = 17 fibroids). A panel of cell phenotypic markers was selected based on our previous in situ investigations and included aldehyde dehydrogenase 1 (ALDH1A1) and vimentin for different fibroblast sub-populations, smooth muscle actin (SMA) as a marker for SMCs, CD31 for endothelial cells and CD45 for leucocytes. Proliferating cell nuclear antigen (PCNA) was also studied to identify proliferating cells. The cellular composition of small fibroids differs significantly from large fibroids. Small fibroids are more cellular (increased cells/mm(2)) than large fibroids, have more blood vessels and also have a higher ratio of SMC to fibroblasts than large fibroids. Large fibroids have more cell proliferation (measured by PCNA) and fewer leucocytes (measured by CD45) than adjacent myometrium, whereas small fibroids are less proliferative and have similar number of leucocytes to myometrium. Different cellular composition between fibroids of different sizes may provide important clues as to the mechanisms that drive fibroid growth.
Collapse
Affiliation(s)
- Sarah J Holdsworth-Carson
- Department of Obstetrics and GynaecologyUniversity of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Dong Zhao
- Department of Obstetrics and GynaecologyUniversity of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia Department of Minimally Invasive Gynecologic SurgeryShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Leonie Cann
- Department of Obstetrics and GynaecologyUniversity of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Sophie Bittinger
- Department of Anatomical PathologyRoyal Women's Hospital, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical SciencesMonash University, Parkville, Victoria, Australia
| | - Peter A W Rogers
- Department of Obstetrics and GynaecologyUniversity of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Feng Q, Crochet JR, Dai Q, Leppert PC, Price TM. Expression of a mitochondrial progesterone receptor (PR-M) in leiomyomata and association with increased mitochondrial membrane potential. J Clin Endocrinol Metab 2014; 99:E390-9. [PMID: 24423317 PMCID: PMC5393478 DOI: 10.1210/jc.2013-2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT Clinical evidence supports a role for progestins in the growth of leiomyomata (fibroids). The mechanism(s) for this is thought to involve gene regulation via the nuclear progesterone receptors. Recently a mitochondrial progesterone receptor (PR-M) has been identified with evidence of a progesterone/progestin-dependent increase in cellular respiration. This observation raises a possible new mechanism whereby progesterone/progestin may affect the growth of fibroids. OBJECTIVE The goals of this research were to determine differential expression of PR-M in normal myometrium compared with the edge of a fibroid within the same uterus, to demonstrate a progestin-dependent increase in mitochondria membrane potential using an immortalized human myometrial cell line and to examine mitochondrial membrane potential in transfected cells expressing the complete coding sequence of PR-M. DESIGN Protein levels of PR-M, PR-B, PR-A, mitochondrial porin, and glyceraldehyde-3-phosphate dehydrogenase were determined in the myometrium and adjacent edge of a fibroid in 10 subjects undergoing hysterectomy for benign indications. Mitochondrial membrane potential was determined by fluorescent emission of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolecarbocyanide iodine in hTERT-HM cells treated with R5020 and in transfected hTERT-HM cells determined by the fluorescent emission of tetramethylrhodamine methyl ester. RESULTS Higher levels of PR-M and mitochondrial porin were found in the fibroid edge compared with adjacent myometrium. Progestin increased mitochondrial membrane potential in hTERT-HM cells, which was not affected by a translation inhibitor. This effect was exaggerated in hTERT-HM cells expressing PR-M after transient transfection. CONCLUSION These studies suggest a mechanism whereby progesterone/progestin may affect the growth of fibroids by altering mitochondrial activity.
Collapse
Affiliation(s)
- Quanling Feng
- Department of Obstetrics and Gynecology (Q.F.), The First Affiliated Hospital, Zhengzhou University, Henan Zhengzhou, China 450052; and Department of Obstetrics and Gynecology (J.R.C., Q.D., P.C.L., T.M.P.), Division of Reproductive Endocrinology and Infertility, and Department of Pathology (P.C.L.), Duke University Medical Center, Duke University, Durham, North Carolina 27713
| | | | | | | | | |
Collapse
|
4
|
Cetinkaya BO, Pamuk F, Keles GC, Ayas B, Ozfidan GK, Kayisli U, Arik N, Horton H. The role of phosphatase and tensin homolog in drug-induced gingival overgrowth. J Periodontal Res 2013; 49:307-13. [DOI: 10.1111/jre.12108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- B O Cetinkaya
- Department of Periodontology, Faculty of Dentistry, Ondokuzmayis University, Samsun, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sphingolipid content in the human uterus and pair-matched uterine leiomyomas remains constant. Lipids 2012; 48:245-50. [PMID: 23239114 DOI: 10.1007/s11745-012-3746-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
In the present work we sought to investigate the content of sphingolipids (sphingosine, sphinganine, sphingosine-1-phosphate and ceramide) in human fibroids and pair-matched healthy uterus tissue. We demonstrated that, in uterine leiomyomas, the contents of sphingosine, sphinganine, sphingosine-1-phosphate and ceramide remains quite constant. However, a trend towards elevation of ceramide and simultaneous reduction of sphingosine-1 phosphate levels was also noticed. Additionally, in uterine leiomyomas we found relevant activation of both PTEN and MAPK(ERK1/2) signaling pathways with only a minor change in AKT activity and relatively absent HIF-1α/AMPK activation. In conclusion, rather modest changes in sphingolipids are correlated with the activation of PTEN and MAPK(ERK1/2) signaling proteins in human uterine leiomyomas.
Collapse
|
6
|
Expression of p53 and p21(WAF-1), apoptosis, and proliferation of smooth muscle cells in normal myometrium during the menstrual cycle: implication of DNA damage and repair for leiomyoma development. Med Mol Morphol 2012; 45:214-21. [PMID: 23224600 DOI: 10.1007/s00795-011-0562-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/12/2011] [Indexed: 10/27/2022]
Abstract
Uterine leiomyoma is the most common tumor in the female genital tract, although its pathogenesis remains unclear. Molecular analyses have demonstrated that each leiomyoma nodule is monoclonal and harbors various DNA abnormalities, suggesting that DNA damage in normal smooth muscle cells plays an important role in the pathogenesis of leiomyoma. The aim of this study is to evaluate precisely when and where DNA damage occurs in the myometrium. The localization of damaged, apoptotic, and proliferating cells was evaluated by immunohistochemical staining of p53, p21(WAF-1), TUNEL, and the cell proliferation marker, Ki-67, in normal myometrium during the menstrual cycle. p53-positive cells and p21(WAF-1)-positive cells were observed during the follicular phase, mostly in the submucosal layer of the myometrium. TUNEL-positive cells were sporadically identified in this layer during either the menstrual or follicular phase. In contrast, the number of Ki-67-positive cells was higher in the luteal phase. These results suggest that DNA damage, repair, and apoptosis occur cyclically in normal myometrium during the follicular phase. In addition, smooth muscle cells proliferate in the luteal phase, which may be a vulnerable period for DNA damage. Thus, these cyclic events during the menstrual cycle may contribute to a high incidence of leiomyoma development.
Collapse
|
7
|
Kim JJ, Sefton EC. The role of progesterone signaling in the pathogenesis of uterine leiomyoma. Mol Cell Endocrinol 2012; 358:223-31. [PMID: 21672608 PMCID: PMC3184215 DOI: 10.1016/j.mce.2011.05.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 01/03/2023]
Abstract
Uterine leiomyomas are benign tumors that originate from the myometrium. Evidence points to ovarian steroid hormones, in particular, progesterone as major promoters of leiomyoma development and growth. While progesterone action in leiomyomas involves the classical nuclear receptor effects on gene regulation, there is growing evidence that signaling pathways are directly activated by the progesterone receptor (PR) and that PR can interact with growth factor signaling systems to promote proliferation and survival of leiomyomas. Studies investigating the genomic and non-genomic actions of PR and its role in leiomyoma growth are summarized here. Studies testing various selective progesterone receptor modulators for the treatment of leiomyomas are also highlighted. An increased understanding of the mechanisms associated with progesterone-driven growth of leiomyomas is critical in order to develop more efficient and targeted therapies for this prevalent disease.
Collapse
Affiliation(s)
- J Julie Kim
- Division of Reproductive Biology Research, Department Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
8
|
Makker A, Goel MM, Das V, Agarwal A. PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. Gynecol Endocrinol 2012; 28:175-81. [PMID: 21916800 DOI: 10.3109/09513590.2011.583955] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PI3K-Akt-mTOR and MAP kinase are two important cell signaling pathways that are activated by steroid hormones and growth factors leading to cellular events including gene expression, cell proliferation and survival. These pathways are considered as an attractive target for the development of novel anticancer molecules, and selective inhibitors specifically targeting different components of these cascades have been developed. This review summarizes the current available knowledge on the PI3K-Akt-mTOR and MAPK pathways and their targeting in estrogen-dependent benign gynecological disorders viz. polycystic ovarian syndrome, uterine leiomyomas and endometriosis, which are a significant cause of high morbidity in women of reproductive age group. Increasing knowledge about the role of the two growth regulatory pathways in the pathogenesis of these disorders may give the opportunity to use specific signal transduction inhibitors for management of these patients in future.
Collapse
Affiliation(s)
- Annu Makker
- Post-Graduate Department of Pathology, CSM Medical University, Lucknow, India.
| | | | | | | |
Collapse
|
9
|
Kim JJ, Sefton EC, Bulun SE. Progesterone receptor action in leiomyoma and endometrial cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:53-85. [PMID: 20374701 DOI: 10.1016/s1877-1173(09)87002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progesterone is a key hormone in the regulation of uterine function. In the normal physiological context, progesterone is primarily involved in remodeling of the endometrium and maintaining a quiescent myometrium. When pathologies of the uterus develop, specifically, endometrial cancer and uterine leiomyoma, response to progesterone is usually altered. Progesterone acts through mainly two isoforms of the progesterone receptor (PR), PRA and PRB which have been reported to exhibit different transcriptional activities. Studies examining the expression and function of the PRs in the normal endometrium and myometrium as well as in endometrial cancer and uterine leiomyoma are summarized here. The clinical use of progestins and the transcriptional activity of the PR on genes specific to endometrial cancer and leiomyoma are described. An increased understanding of the differential expression of PRs and response to progesterone in these two diseases is critical in order to develop more efficient and targeted therapies.
Collapse
Affiliation(s)
- J Julie Kim
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
10
|
Chang HL, Senaratne TN, Zhang L, Szotek PP, Stewart E, Dombkowski D, Preffer F, Donahoe PK, Teixeira J. Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci 2009; 17:158-67. [PMID: 19805552 DOI: 10.1177/1933719109348924] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Uterine leiomyomas (also known as uterine fibroids) are the most common benign tumors of female reproductive tract and are the single most common indication for hysterectomies. Despite their high prevalence, the exact pathogenesis of these benign tumors is still unknown. One possible mechanism for leiomyoma formation is dysregulation of mesenchymal stem cell activity. Mesenchymal stem cells have been identified in both human and murine uteri and cancer stem cells have been identified in female reproductive malignancies. We compared stem/progenitor cell characteristics in both normal myometrium and the corresponding leiomyoma of patient's undergoing hysterectomies. We found that leiomyoma cells form fewer mesenchymal stem cell colonies and exhibit less Hoechst dye-excluding side population (SP) activity, which is a function associated with progenitor cells in other tissues, than cells isolated from normal myometrium. Whereas in normal myometrium, we observed heterogeneous expression of CD90, a cell surface marker associated the with differentiation potential of uterine fibroblasts, in leiomyomas, we observed homogenous expression of CD90, suggesting leiomyoma cells are more terminally differentiated. Furthermore, we found that while leiomyoma cells could only produce CD90 expressing cells, both CD90+ and CD90- myometrial cells could reestablish their original heterogeneous CD90 profile when expanded in vitro. These results suggest that normal myometrium contains cells with stem/progenitor cell activities that are absent in leiomyomas.
Collapse
Affiliation(s)
- Henry L Chang
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Klemke M, Meyer A, Nezhad MH, Bartnitzke S, Drieschner N, Frantzen C, Schmidt EH, Belge G, Bullerdiek J. Overexpression of HMGA2 in uterine leiomyomas points to its general role for the pathogenesis of the disease. Genes Chromosomes Cancer 2009; 48:171-8. [PMID: 18980243 DOI: 10.1002/gcc.20627] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An overexpression of HMGA2 is supposed to be a key event in the genesis of leiomyoma with chromosomal rearrangements affecting the region 12q14-15 targeting the HMGA2 gene, but gene expression data regarding differences between uterine leiomyomas with and those without 12q14-15 aberrations are insufficient. To address the question whether HMGA2 is only upregulated in the 12q14-15 subgroup, the expression of HMGA2 was analyzed in a comprehensive set of leiomyomas (n = 180) including tumors with 12q14-15 chromosomal aberrations (n = 13) and matching myometrial tissues (n = 51) by quantitative RT-PCR. The highest expression levels for HMGA2 were observed in tumors with rearrangements affecting the region 12q14-15, but although HMGA2 is expressed at lower levels in leiomyomas without such aberrations, the comparison between the expression in myomas and matching myometrial tissues indicates a general upregulation of HMGA2 regardless of the presence or absence of such chromosomal abnormalities. The significant (P < 0.05) overexpression of HMGA2 also in the group of fibroids without chromosomal aberrations of the 12q14-15 region suggests a general role of HMGA2 in the development of the disease.
Collapse
Affiliation(s)
- Markus Klemke
- Center for Human Genetics, University of Bremen, 28359 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Estrogen receptor alpha (ERalpha) phospho-serine-118 is highly expressed in human uterine leiomyomas compared to matched myometrium. Virchows Arch 2008; 453:557-69. [PMID: 18853184 DOI: 10.1007/s00428-008-0679-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
It is thought that the growth of uterine leiomyomas may be mediated by the interaction of estrogen receptor alpha (ERalpha) and growth factor pathways and that phosphorylation of ERalpha at serine 118 (ERalpha-phospho-Ser118) is important in this interaction. In this study, immunoblotting and immunohistochemistry were used to investigate the expression of ERalpha-phospho-Ser118, phosphorylated p44/42 mitogen-activated protein kinase (phospho-p44/42 MAPK), and proliferating cell nuclear antigen (PCNA) in human leiomyoma and myometrial tissues during the proliferative and secretory phases of the menstrual cycle. We found that tumors taken from the proliferative phase expressed significantly higher levels of ERalpha-phospho-Ser118, phospho-p44/42 MAPK, and PCNA compared to patient-matched myometria and had significantly higher ERalpha-phospho-Ser118 and PCNA expression compared to secretory phase tumors. Also, enhanced colocalization and association of phospho-p44/42 MAPK and ERalpha-phospho-Ser118 were observed in proliferative phase tumors by confocal microscopy and immunoprecipitation, respectively. These data suggest that ERalpha-phospho-Ser118 may be important in leiomyoma growth and is possibly phosphorylated by phospho-p44/42 MAPK.
Collapse
|