1
|
Morales-Sánchez E, Campuzano-Caballero JC, Cervantes A, Martínez-Ibarra A, Cerbón M, Vital-Reyes VS. Which side of the coin are you on regarding possible postnatal oogenesis? Arch Med Res 2024; 55:103071. [PMID: 39236439 DOI: 10.1016/j.arcmed.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.
Collapse
Affiliation(s)
- Elizabeth Morales-Sánchez
- Unidad de Histología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Campuzano-Caballero
- Departamento de Biología Comparada, Facultad de Ciencias, Laboratorio de Biología de la Reproducción Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Cervantes
- Servicio de Genética, Hospital General de México, Eduardo Liceaga, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Martínez-Ibarra
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico
| | - Marco Cerbón
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico.
| | | |
Collapse
|
2
|
Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reprod Sci 2021; 28:1573-1595. [PMID: 33877644 DOI: 10.1007/s43032-021-00548-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Diseases, disorders, and dysfunctions of the female reproductive tract tissues can result in either infertility and/or hormonal imbalance. Current treatment options are limited and often do not result in tissue function restoration, requiring alternative therapeutic approaches. Regenerative medicine offers potential new therapies through the bioengineering of female reproductive tissues. This review focuses on some of the current technologies that could address the restoration of functional female reproductive tissues, including the use of stem cells, biomaterial scaffolds, bio-printing, and bio-fabrication of tissues or organoids. The use of these approaches could also be used to address issues in infertility. Strategies such as cell-based hormone replacement therapy could provide a more natural means of restoring normal ovarian physiology. Engineering of reproductive tissues and organs could serve as a powerful tool for correcting developmental anomalies. Organ-on-a-chip technologies could be used to perform drug screening for personalized medicine approaches and scientific investigations of the complex physiological interactions between the female reproductive tissues and other organ systems. While some of these technologies have already been developed, others have not been translated for clinical application. The continuous evolution of biomaterials and techniques, advances in bioprinting, along with emerging ideas for new approaches, shows a promising future for treating female reproductive tract-related disorders and dysfunctions.
Collapse
|
3
|
Porras-Gómez TJ, Moreno-Mendoza N. Interaction between oocytes, cortical germ cells and granulosa cells of the mouse and bat, following the dissociation-re-aggregation of adult ovaries. ZYGOTE 2020; 28:223-232. [PMID: 32122435 DOI: 10.1017/s0967199420000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is widely accepted that the oocyte plays a very active role in promoting the growth of the follicle by directing the differentiation of granulosa cells and secreting paracrine growth factors. In turn, granulosa cells regulate the development of the oocytes, establishing close bidirectional communication between germ and somatic cells. The presence of cortical cells with morphological characteristics, similar to primordial germ cells that express specific germline markers, stem cells and cell proliferation, known as adult cortical germ cells (ACGC) have been reported in phyllostomid bats. Using magnetic cell separation techniques, dissociation-cellular re-aggregation and organ culture, the behaviour of oocytes and ACGC was analyzed by interacting in vitro with mouse ovarian cells. Bat ACGC was mixed with disaggregated ovaries from a transgenic mouse that expressed green fluorescent protein. The in vitro reconstruction of the re-aggregates was evaluated. We examined the viability, integration, cellular interaction and ovarian morphogenesis by detecting the expression of Vasa, pH3, Cx43 and Laminin. Our results showed that the interaction between ovarian cells is carried out in the adult ovary of two species, without them losing their capacity to form follicular structures, even after having been enzymatically dissociated.
Collapse
Affiliation(s)
- Tania Janeth Porras-Gómez
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México
| | - Norma Moreno-Mendoza
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510México, DF, México
| |
Collapse
|
4
|
Ddx4 + Oogonial Stem Cells in Postmenopausal Women's Ovaries: A Controversial, Undefined Role. Cells 2019; 8:cells8070650. [PMID: 31261822 PMCID: PMC6678385 DOI: 10.3390/cells8070650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies support the existence of oogonial stem cells (OSCs) in the ovarian cortex of different mammals, including women.These cells are characterized by small size, membrane expression of DEAD(Asp-Glu-Ala-Asp)-box polypeptide-4 (Ddx4), and stemness properties (such as self-renewal and clonal expansion) as well as the ability to differentiate in vitro into oocyte-like cells. However, the discovery of OSCs contrasts with the popular theory that there is a numerically defined oocyte pool for female fertility which undergoes exhaustion with menopause. Indeed, in the ovarian cortex of postmenopausal women OSCs have been detected that possess both viability and capability to differentiate into oocytes, which is similar to those observed in younger patients. The pathophysiological role of this cell population in aged women is still debated since OSCs, under appropriate stimuli, differentiate into somatic cells, and the occurrence of Ddx4+ cells in ovarian tumor samples also suggests their potential involvement in carcinogenesis. Although further investigation into these observations is needed to clarify OSC function in ovary physiology, clinical investigators and researchers studying female infertility are presently focusing on OSCs as a novel opportunity to restore ovarian reserve in both young women undergoing early ovarian failure and cancer survivors experiencing iatrogenic menopause.
Collapse
|
5
|
Clarkson YL, Weatherall E, Waterfall M, McLaughlin M, Lu H, Skehel PA, Anderson RA, Telfer EE. Extracellular Localisation of the C-Terminus of DDX4 Confirmed by Immunocytochemistry and Fluorescence-Activated Cell Sorting. Cells 2019; 8:cells8060578. [PMID: 31212843 PMCID: PMC6627596 DOI: 10.3390/cells8060578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 02/03/2023] Open
Abstract
Putative oogonial stem cells (OSCs) have been isolated by fluorescence-activated cell sorting (FACS) from adult human ovarian tissue using an antibody against DEAD-box helicase 4 (DDX4). DDX4 has been reported to be germ cell specific within the gonads and localised intracellularly. White et al. (2012) hypothesised that the C-terminus of DDX4 is localised on the surface of putative OSCs but is internalised during the process of oogenesis. This hypothesis is controversial since it is assumed that RNA helicases function intracellularly with no extracellular expression. To determine whether the C-terminus of DDX4 could be expressed on the cell surface, we generated a novel expression construct to express full-length DDX4 as a DsRed2 fusion protein with unique C- and N-terminal epitope tags. DDX4 and the C-terminal myc tag were detected at the cell surface by immunocytochemistry and FACS of non-permeabilised human embryonic kidney HEK 293T cells transfected with the DDX4 construct. DDX4 mRNA expression was detected in the DDX4-positive sorted cells by RT-PCR. This study clearly demonstrates that the C-terminus of DDX4 can be expressed on the cell surface despite its lack of a conventional membrane-targeting or secretory sequence. These results validate the use of antibody-based FACS to isolate DDX4-positive putative OSCs.
Collapse
Affiliation(s)
- Yvonne L Clarkson
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Emma Weatherall
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Martin Waterfall
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Marie McLaughlin
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Haojiang Lu
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Paul A Skehel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
6
|
Xu H, Zhu X, Li W, Tang Z, Zhao Y, Wu X. Isolation and in vitro culture of ovarian stem cells in Chinese soft-shell turtle (Pelodiscus sinensis). J Cell Biochem 2018; 119:7667-7677. [PMID: 29923352 DOI: 10.1002/jcb.27114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Gonadal cell lines provide valuable tools for studying gametogenesis, sex differentiation, and manipulating germ cells in reproductive biology. Female germline stem cells have been characterized and isolated from ovaries of mammalian species, including mice and human, but there has been very few studies on female germline stem cells in reptiles. Here, we described an ovarian stem cell-like line isolated and cultured from the Chinese soft-shell turtle (Pelodiscus sinensis), designated as PSO1. The cells showed high alkaline phosphatase activity with a normal diploid karyotype. As shown by reverse transcription-polymerase chain reaction, the cells were positive for the expression of germ cell-specific genes, vasa and dazl, as well as a stem cell marker, nanog, but negative for the expression of the folliculogenesis-specific gene, figla. Likewise, through fluorescent immunostaining analyses, both the Dazl and Vasa proteins were detected abundantly in the cytoplasm of perinuclear region, whereas Nanog and PCNA were dominantly observed in the nuclei in PSO1 cells. Moreover, PSO1 cells transfected with pCS2:h2b-egfp could properly express the fusion protein in the nuclei. Taken together, the findings suggested that the germline stem cells exist in the ovary of juvenile Chinese soft-shell turtle and these cells can be isolated for a long-term in vitro culture under experimental conditions. This study has provided a valuable basis for further investigations on the molecular mechanisms whereby the germline stem cells develop and differentiate into gametes in turtles. Also, it has paved the way for studies on oogenesis in turtles, even in the other reptiles.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhoukai Tang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yanyan Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xuling Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
7
|
Parvari S, Yazdekhasti H, Rajabi Z, Gerayeli Malek V, Rastegar T, Abbasi M. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells. Cell Reprogram 2017; 18:419-428. [PMID: 27906587 DOI: 10.1089/cell.2016.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.
Collapse
Affiliation(s)
- Soraya Parvari
- 1 Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Hossein Yazdekhasti
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Tayebeh Rastegar
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
8
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
9
|
de Souza GB, Costa JJN, da Cunha EV, Passos JRS, Ribeiro RP, Saraiva MVA, van den Hurk R, Silva JRV. Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture in vitro. Reprod Domest Anim 2016; 52:243-250. [DOI: 10.1111/rda.12886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023]
Affiliation(s)
- GB de Souza
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - JJN Costa
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - EV da Cunha
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - JRS Passos
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - RP Ribeiro
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - MVA Saraiva
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - R van den Hurk
- Department of Pathobiology; Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - JRV Silva
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| |
Collapse
|
10
|
The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals. Stem Cells Int 2015; 2016:1728278. [PMID: 26788065 PMCID: PMC4693009 DOI: 10.1155/2016/1728278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022] Open
Abstract
The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.
Collapse
|
11
|
Pelosi E, Simonsick E, Forabosco A, Garcia-Ortiz JE, Schlessinger D. Dynamics of the ovarian reserve and impact of genetic and epidemiological factors on age of menopause. Biol Reprod 2015; 92:130. [PMID: 25904009 PMCID: PMC4645983 DOI: 10.1095/biolreprod.114.127381] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/05/2015] [Accepted: 04/06/2015] [Indexed: 01/27/2023] Open
Abstract
The narrow standard age range of menopause, ∼50 yr, belies the complex balance of forces that govern the underlying formation and progressive loss of ovarian follicles (the "ovarian reserve" whose size determines the age of menopause). We show here the first quantitative graph of follicle numbers, distinguished from oocyte counts, across the reproductive lifespan, and review the current state of information about genetic and epidemiological risk factors in relation to possible preservation of reproductive capacity. In addition to structural X-chromosome changes, several genes involved in the process of follicle formation and/or maintenance are implicated in Mendelian inherited primary ovarian insufficiency (POI), with menopause before age 40. Furthermore, variants in a largely distinct cohort of reported genes-notably involved in pathways relevant to atresia, including DNA repair and cell death-have shown smaller but additive effects on the variation in timing of menopause in the normal range, early menopause (age <45), and POI. Epidemiological factors show effect sizes comparable to those of genetic factors, with smoking accounting for about 5% of the risk of early menopause, equivalent to the summed effect of the top 17 genetic variants. The identified genetic and epidemiological factors underline the importance of early detection of reproductive problems to enhance possible interventions.
Collapse
Affiliation(s)
- Emanuele Pelosi
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Eleanor Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | | - Jose Elias Garcia-Ortiz
- División de Genética, Centro de Investigacion Biomedica de Occidente-IMSS, Guadalajara, Mexico
| | - David Schlessinger
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
12
|
Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reprod Sci 2015; 22:884-903. [PMID: 25779995 DOI: 10.1177/1933719115576727] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study was undertaken to investigate stem cells in adult mouse ovary, the effect of chemotherapy on them and their potential to differentiate into germ cells. Very small embryonic-like stem cells (VSELs) that were SCA-1+/Lin-/CD45-, positive for nuclear octamer-binding transforming factor 4 (OCT-4), Nanog, and cell surface stage-specific embryonic antigen 1, were identified in adult mouse ovary. Chemotherapy resulted in complete loss of follicular reserve and cytoplasmic OCT-4 positive progenitors (ovarian germ stem cells) but VSELs survived. In ovarian surface epithelial (OSE) cell cultures from chemoablated ovary, proliferating germ cell clusters and mouse vasa homolog/growth differentiation factor 9-positive oocyte-like structure were observed by day 6, probably arising as a result of differentiation of the surviving VSELs. Follicle-stimulating hormone (FSH) exerted a direct stimulatory action on the OSE and induced stem cells proliferation and differentiation into premeiotic germ cell clusters during intact chemoablated ovaries culture. The FSH analog pregnant mare serum gonadotropin treatment to chemoablated mice increased the percentage of surviving VSELs in ovary. The results of this study provide evidence for the presence of potential VSELs in mouse ovaries and show that they survive chemotherapy, are modulated by FSH, and retain the ability to undergo oocyte-specific differentiation. These results show relevance to women who undergo premature ovarian failure because of oncotherapy.
Collapse
Affiliation(s)
- Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| | - Smita Bhutda
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Parte S, Bhartiya D, Patel H, Daithankar V, Chauhan A, Zaveri K, Hinduja I. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. J Ovarian Res 2014; 7:25. [PMID: 24568237 PMCID: PMC4234975 DOI: 10.1186/1757-2215-7-25] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of 'fixed germ cell pool' in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. METHODS Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. RESULTS Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. CONCLUSIONS Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary development, are indeed well recapitulated during in vitro oogenesis in adult OSE cultures along with characteristic expression of stem/germ cell/oocyte markers. Further studies are required to assess the genetic integrity of in vitro derived oocytes before harnessing their clinical potential. Advance in our knowledge about germ cell differentiation from stem cells will enable researchers to design better in vitro strategies which in turn may have relevance to reproductive biology and regenerative medicine.
Collapse
|
14
|
Abstract
SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.
Collapse
|
15
|
Bhartiya D, Sriraman K, Parte S, Patel H. Ovarian stem cells: absence of evidence is not evidence of absence. J Ovarian Res 2013; 6:65. [PMID: 24044496 PMCID: PMC3848624 DOI: 10.1186/1757-2215-6-65] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/15/2013] [Indexed: 01/17/2023] Open
Abstract
Background Lei and Spradling in a recent study published in PNAS failed to detect ‘germline cysts’ by elegant studies using lineage tracing approach and thus concluded that adult mouse ovaries lack stem cells. They proposed that primordial follicle pool generated during fetal life is sufficient to sustain oogenesis and that there is no renewal of oocytes during adult life. Contrary to their results, we have reported presence of very small pluripotent, embryonic-like stem cells (VSELs), their immediate descendants (OGSCs) and germ cell ‘cysts’ or ‘nests’ (formed by rapid cell division and incomplete cytokinesis) in surface epithelial cell smears of adult sheep, monkey and human ovaries. Methods In the present study, ovaries were collected from adult mouse (treated with 5 IU pregnant mare serum gonadotropin, PMSG) and sheep (from slaughter house) and testis from mouse treated with busulphan (25 mg/Kg). Ovarian surface epithelial (OSE) cells and testicular smears were studied for the presence of cysts. Sheep OSE smears were also used to show cytoplasmic continuity amongst the cyst cells studied by immunolocalization and confocal microscopy of stem cells specific markers OCT-4 and SSEA-4. Results Cysts were observed and confocal microscopy imaging confirmed cytoplasmic continuity amongst the cells comprising the cysts. Conclusions Cysts represent self-renewal and clonal expansion of stem cells with incomplete cytokinesis and are a hallmark feature of stem cells. We suggest the use of PMSG stimulated mouse ovaries and use of more primitive markers like OCT-4 or STELLA rather than MVH for lineage tracing studies to conclusively show presence of stem cells by lineage-tracing studies.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, India.
| | | | | | | |
Collapse
|
16
|
Intraovarian transplantation of primordial follicles fails to rescue chemotherapy injured ovaries. Sci Rep 2013; 3:1384. [PMID: 23463338 PMCID: PMC3589785 DOI: 10.1038/srep01384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023] Open
Abstract
Busulfan and cyclophosphamide (B/C)-treated mice exhibited a marked increase in apoptosis and a concomitant decrease in the ovarian weight. Histological and RT-PCR analysis indicate that the period of germ cell depletion in the B/C-treated ovaries coincides with decreased expression of genes Figla, Lhx8, Nobox, c-kit, and Sox3. However, depletion of the ovarian germ cells is mediated by autophagy-independent pathways that involve Fas/FasL-, TNF-, and/or p53-signalings. Treatment with B/C resulted in the cease of the reproductive function to produce their offspring during the 15(th) week post-treatment period in female mice. Furthermore, injection of the 3 × 10(6) GFP positive primordial follicles into the ovaries of the B/C treated mouse did not show apparent colonization of the transplanted follicles within the recipient ovaries. The present results suggest that B/C treatment is closely associated with an increased risk of premature ovarian failure.
Collapse
|
17
|
[Current progress and future direction in the biology of ovarian germ stem cells in mammals]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:586-90. [PMID: 23266977 DOI: 10.3724/sp.j.1141.2012.06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whether or not oogenesis continues after birth in mammalian ovaries remains controversial. Since the 1950's, it has been generally accepted that oogenesis takes place during embryogenesis in mammals and ceases at birth. At birth, germ cells in mammalian ovaries have progressed to the diplotene stage of meiotic prophase and have formed primordial follicles with surrounding somatic cells. These primordial follicles represent follicle reserves of the reproductive life. However, this view has been recently challenged by a growing body of evidence showing the isolation and propagation of germ stem cells from mouse and human ovaries. These ovarian germ stem cells are capable of regenerating functional oocytes when transplanted back into recipient ovaries. Despite the discovery of the potential germ stem cells in mammalian ovaries, it remains uncertain whether these cells exist and function in ovaries under physiological conditions. Herein we review the current progress and future direction in this infant area.
Collapse
|
18
|
Celik O, Celik E, Turkcuoglu I, Yilmaz E, Simsek Y, Tiras B. Germline cells in ovarian surface epithelium of mammalians: a promising notion. Reprod Biol Endocrinol 2012; 10:112. [PMID: 23245287 PMCID: PMC3566967 DOI: 10.1186/1477-7827-10-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/14/2012] [Indexed: 01/03/2023] Open
Abstract
It is a long held doctrine in reproductive biology that women are born with a finite number of oocytes and there is no oogenesis during the postnatal period. However, recent evidence challenges this by showing the presence of germ line stem cells in the human ovarian surface epithelium (OSE), which can serve as a source of germ cells, and differentiate into oocyte like structures. Postnatal renewal of oocytes may have enormous therapeutic potential especially in women facing the risk of premature ovarian failure idiopathically or iatrogenically after exposure to gonadotoxic chemotherapy and radiation for cancer therapy.This article reviews current knowledge on germ line stem cells in human OSE.
Collapse
Affiliation(s)
- Onder Celik
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ebru Celik
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ilgin Turkcuoglu
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ercan Yilmaz
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Yavuz Simsek
- Department of Obstetrics and Gynecology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Bulent Tiras
- Department of Obstetric and Gynecology, Acibadem University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
19
|
Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res 2012; 5:32. [PMID: 23134576 PMCID: PMC3616927 DOI: 10.1186/1757-2215-5-32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian cortical strips. Thus a further understanding of FSH action on the ovary is essential. We have earlier reported presence of pluripotent very small embryonic-like stem cells (VSELs express Oct-4A in addition to other pluripotent markers) and their immediate descendants 'progenitors' ovarian germ stem cells (OGSCs express Oct-4B in addition to other germ cell markers) in ovarian surface epithelium (OSE) in various mammalian species including mice, rabbit, monkey, sheep and human. Present study was undertaken to investigate the effect of pregnant mare serum gonadotropin (PMSG) on adult mice ovaries with a focus on VSELs, OGSCs, postnatal oogenesis and primordial follicle assembly. METHODS Ovaries were collected from adult mice during different stages of estrus cycle and after 2 and 7 days of PMSG (5 IU) treatment to study histo-architecture and expression for FSHR, pluripotent stem cells , meiosis and germ cell specific markers. RESULTS PMSG treatment resulted in increased FSHR and proliferation as indicated by increased FSHR and PCNA immunostaining in OSE and oocytes of primordial follicles (PF) besides the granulosa cells of large antral follicles. Small 1-2 regions of multilayered OSE invariably associated with a cohort of PF during estrus stage in control ovary were increased to 5-8 regions after PMSG treatment. This was associated with an increase in pluripotent transcripts (Oct-4A, Nanog), meiosis (Scp-3) and germ cells (Oct-4B, Mvh) specific markers. MVH showed positive immuno staining on germ cell nest-like clusters and at places primordial follicles appeared connected through oocytes. CONCLUSIONS The results of the present study show that gonadotropin (PMSG) treatment to adult mouse leads to increased pluripotent stem cell activity in the ovaries, associated with increased meiosis, appearance of several cohorts of PF and their assembly in close proximity of OSE. This was found associated with the presence of germ cell nests and cytoplasmic continuity of oocytes in PF. We have earlier reported that pluripotent ovarian stem cells in the adult mammalian ovary are the VSELs which give rise to slightly differentiated OGSCs. Thus we propose that gonadotropin through its action on pluripotent VSELs augments neo-oogenesis and PF assembly in adult mouse ovaries.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | | | | | | |
Collapse
|
20
|
Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Int 2012; 2012:921082. [PMID: 22548074 PMCID: PMC3324916 DOI: 10.1155/2012/921082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/08/2011] [Accepted: 12/19/2011] [Indexed: 01/17/2023] Open
Abstract
The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs), and slightly larger “progenitor” ovarian germ stem cells (OGSCs). Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.
Collapse
|
21
|
Virant-Klun I, Skutella T. Stem cells in aged mammalian ovaries. Aging (Albany NY) 2010; 2:3-6. [PMID: 20228938 PMCID: PMC2837201 DOI: 10.18632/aging.100117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/25/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
22
|
De Felici M. Germ stem cells in the mammalian adult ovary: considerations by a fan of the primordial germ cells. Mol Hum Reprod 2010; 16:632-6. [PMID: 20086005 DOI: 10.1093/molehr/gaq006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
At or early after birth, mammalian ovaries are filled with primordial follicles each composed by an oocyte blocked at the end of prophase I surrounded by a single layer of granulosa cells. The doctrine that female mammals are born with a finite number of oocytes fated to be exhausted with the age has been challenged by recent results claiming that new oocytes can be continuously formed in the post-natal mouse ovary. In my view, this notion, termed neo-oogenesis, is strictly linked to the process of the germline specification which presents unique features. Therefore, in the present paper, I am going to discuss two aspects of neo-oogenesis related to this process: first, evidence showing that adult mammalian ovary contains cells able to undergo germline specification and produce new oocytes; and second, the possible origin of such cells. In conclusion, I favour the possibility that a small number of primordial germ cells (PGCs)/oogonia or of PGC-derived undifferentiated cells with stem cell characteristics could remain in the post-natal ovary and under certain conditions may resume mitosis, enter meiosis and give rise to oocytes.
Collapse
Affiliation(s)
- Massimo De Felici
- Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, Rome 00173, Italy.
| |
Collapse
|
23
|
Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 2009; 30:264-83. [PMID: 19366753 PMCID: PMC2726843 DOI: 10.1210/er.2008-0034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Female reproductive potential is limited in the majority of species due to oocyte depletion. Because functional human oocytes are restricted in number and accessibility, a robust system to differentiate oocytes from stem cells would enable a thorough investigation of the genetic, epigenetic, and environmental factors affecting human oocyte development. Also, the differentiation of functional oocytes from stem cells may permit the success of human somatic cell nuclear transfer for reprogramming studies and for the production of patient-specific embryonic stem cells (ESCs). Thus, ESC-derived oocytes could ultimately help to restore fertility in women. Here, we review endogenous and ESC-derived oocyte development, and we discuss the potential and challenges for differentiating functional oocytes from ESCs.
Collapse
Affiliation(s)
- Cory R Nicholas
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, California 94304, USA.
| | | | | | | |
Collapse
|
24
|
Qin J, Guo X, Cui GH, Zhou YC, Zhou DR, Tang AF, Yu ZD, Gui YT, Cai ZM. Cluster characterization of mouse embryonic stem cell-derived pluripotent embryoid bodies in four distinct developmental stages. Biologicals 2009; 37:235-44. [PMID: 19339198 DOI: 10.1016/j.biologicals.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 10/20/2022] Open
Abstract
The formation of embryoid bodies (EBs) is the principal step in the differentiation of embryonic stem (ES) cells. In this study, the morphological characteristics and gene expression patterns of EBs related to the sequential stages of embryonic development were well defined in four distinct developmental groups over 112 days of culture: early-stage EBs groups (1-7 days of differentiation), mid-stage EBs groups (9-15 days of differentiation), maturing EBs groups (17-45 days of differentiation) and matured EBs groups (50 days of differentiation). We first determined definite histological location of apoptosis within EBs and the sequential expression of molecular markers representing stem cells (Oct4, SSEA-1, Sox-2 and AKP), germ cells (Fragilis, Dazl, c-kit, StellaR, Mvh and Stra8), ectoderm (Neurod, Nestin and Neurofilament), mesoderm (Gata-1, Flk-1 and Hbb) and endoderm (AFP and Transthyretin). Our results revealed that developing EBs possess either pluripotent stem cell or germ cell states and that three-dimensional aggregates of EBs initiate mES cell differentiation during prolonged culture in vitro. Therefore, we suggest that this EB system to some extent recapitulates the early developmental processes occurring in vivo.
Collapse
Affiliation(s)
- J Qin
- Key Laboratory of Male Reproduction & Genetics of Guangdong Province, Peking University, Shenzhen Hospital, Lianhua Road 1120, FuTian District, Shenzhen 518036, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zech NH, Shkumatov A, Verlinsky Y. Oocyte-like structures arising from cells of follicular fluid are not captured in aspirates. Reprod Biomed Online 2009; 18:443-8. [PMID: 19298748 DOI: 10.1016/s1472-6483(10)60107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recently, cells from ovarian surface epithelium (OSE) of post-menopausal women and women with premature ovarian failure were investigated and oocyte-like cells with diameters up to 95 microm were found to arise after a certain time in culture. In addition, it seems that a mixed population of germ cells and germline stem cells exists in non-follicle ovarian structures. Relating to an earlier publication, where it was shown that pre-antral follicles with immature oocytes could be captured in follicular fluid (FF) aspirates due to the incorporated tissue in the puncture needle, it was reasoned that OSE or otherwise germline stem cells, possibly captured equally through ovarian puncture, might give rise to oocyte-like cells. The aim of this study was therefore to try to derive such oocyte-like cells from FF aspirates of patients undergoing IVF after culture. Additionally, FF-derived cells were aggregated with human embryonic stem cells to see if an embryonic environment had the ability to enable cells from the FF aspirate to acquire an oocyte-like morphology. Investigations could not confirm the development of oocyte-like cells from cells of FF aspirates.
Collapse
Affiliation(s)
- Nicolas H Zech
- Reproductive Genetics Institute, 2825 N Halsted, Chicago, IL 60657, USA.
| | | | | |
Collapse
|
26
|
Tilly JL, Rueda BR. Minireview: stem cell contribution to ovarian development, function, and disease. Endocrinology 2008; 149:4307-11. [PMID: 18556344 PMCID: PMC2553384 DOI: 10.1210/en.2008-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 05/30/2008] [Indexed: 12/22/2022]
Abstract
By virtue of the fact that oocytes not only serve to produce embryos after fertilization but also can effectively reprogram adult somatic cell nuclei to a pluripotent state, much of the interest in the role of stem cells in ovarian biology has been focused on the germline. However, very recent studies have revealed that somatic stem cells may also be of considerable relevance to the study of normal ovarian function. Furthermore, stem cell dysfunction may underlie or contribute to disease states such as ovarian cancer and polycystic ovary syndrome. Our objective is to explore these concepts in greater detail, with the hope of stimulating further research efforts into understanding what role stem cells may play in the physiology and pathology of the mammalian female gonads.
Collapse
Affiliation(s)
- Jonathan L Tilly
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
27
|
Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod 2008; 80:2-12. [PMID: 18753611 DOI: 10.1095/biolreprod.108.069088] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whether or not oogenesis continues in the ovaries of mammalian females during postnatal life was heavily debated from the late 1800s through the mid-1900s. However, in 1951 Lord Solomon Zuckerman published what many consider to be a landmark paper summarizing his personal views of data existing at the time for and against the possibility of postnatal oogenesis. In Zuckerman's opinion, none of the evidence he considered was inconsistent with Waldeyer's initial proposal in 1870 that female mammals cease production of oocytes at or shortly after birth. This conclusion rapidly became dogma, and remained essentially unchallenged until just recently, despite the fact that Zuckerman did not offer a single experiment proving that adult female mammals are incapable of oogenesis. Instead, 20 years later he reemphasized that his conclusion was based solely on an absence of data he felt would be inconsistent with the idea of a nonrenewable oocyte pool provided at birth. However, in the immortal words of Carl Sagan, an "absence of evidence is not evidence of absence." Indeed, building on the efforts of a few scientists who continued to question this dogma after Zuckerman's treatise in 1951, we reported several data sets in 2004 that were very much inconsistent with the widely held belief that germ cell production in female mammals ceases at birth. Perhaps not surprisingly, given the magnitude of the paradigm shift being proposed, this work reignited a vigorous debate that first began more than a century ago. Our purpose here is to review the experimental evidence offered in recent studies arguing support for and against the possibility that adult mammalian females replenish their oocyte reserve. "Never discourage anyone who continually makes progress, no matter how slow."-Plato (427-347 BC).
Collapse
Affiliation(s)
- Jonathan L Tilly
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
28
|
Krysko DV, Diez-Fraile A, Criel G, Svistunov AA, Vandenabeele P, D’Herde K. Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 2008; 13:1065-87. [DOI: 10.1007/s10495-008-0238-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/26/2008] [Indexed: 12/27/2022]
|