1
|
Bersani I, Lapergola G, Patacchiola R, D'Adamo E, Stuppia L, de Laurenzi V, Damiani V, Cataldo I, Clemente K, Primavera A, Salomone R, Barbante E, Campi F, Savarese I, Ronci S, Dotta A, Braguglia A, Longo D, Gavilanes DAW, Gazzolo F, Serpero L, Strozzi MC, Maconi A, Cassinari M, Libener R, Gazzolo D. Elevated S100B urine levels predict seizures in infants complicated by perinatal asphyxia and undergoing therapeutic hypothermia. Clin Chem Lab Med 2024; 62:1109-1117. [PMID: 38290722 DOI: 10.1515/cclm-2023-1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Seizures (SZ) are one of the main complications occurring in infants undergoing therapeutic hypothermia (TH) due to perinatal asphyxia (PA) and hypoxic ischemic encephalopathy (HIE). Phenobarbital (PB) is the first-line therapeutic strategy, although data on its potential side-effects need elucidation. We investigated whether: i) PB administration in PA-HIE TH-treated infants affects S100B urine levels, and ii) S100B could be a reliable early predictor of SZ. METHODS We performed a prospective case-control study in 88 PA-HIE TH infants, complicated (n=44) or not (n=44) by SZ requiring PB treatment. S100B urine levels were measured at 11 predetermined monitoring time-points from first void up to 96-h from birth. Standard-of-care monitoring parameters were also recorded. RESULTS S100B significantly increased in the first 24-h independently from HIE severity in the cases who later developed SZ and requested PB treatment. ROC curve analysis showed that S100B, as SZ predictor, at a cut-off of 2.78 μg/L achieved a sensitivity/specificity of 63 and 84 %, positive/negative predictive values of 83 and 64 %. CONCLUSIONS The present results offer additional support to the usefulness of S100B as a trustable diagnostic tool in the clinical daily monitoring of therapeutic and pharmacological procedures in infants complicated by PA-HIE.
Collapse
Affiliation(s)
- Iliana Bersani
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Lapergola
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Roberta Patacchiola
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Liborio Stuppia
- Center for Advances Studies and Technology (CAST), G. d'Annunzio University, Chieti, Italy
| | - Vincenzo de Laurenzi
- Center for Advances Studies and Technology (CAST), G. d'Annunzio University, Chieti, Italy
| | - Verena Damiani
- Center for Advances Studies and Technology (CAST), G. d'Annunzio University, Chieti, Italy
| | - Ivana Cataldo
- Laboratory of Clinical Pathology, SS Annunziata Hospital, Chieti, Italy
| | - Katia Clemente
- Laboratory of Clinical Pathology, SS Annunziata Hospital, Chieti, Italy
| | - Adele Primavera
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Rita Salomone
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Elisabetta Barbante
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Francesca Campi
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Immacolata Savarese
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sara Ronci
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Dotta
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Annabella Braguglia
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Longo
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Danilo A W Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | | | - Laura Serpero
- Department of Maternal, Fetal and Neonatal Medicine, SS Antonio, Biagio and C. Arrigo Hospital, Alessandria, Italy
| | - Maria Chiara Strozzi
- Department of Pediatrics and Neonatology, Ospedale Cardinal Massaia, Asti, Italy
| | - Antonio Maconi
- Social Security Administration Development and Promotion of Scientific Research Unit, SS Antonio, Biagio and C. Arrigo Hospital, Alessandria, Italy
| | - Maurizio Cassinari
- Department of Clinical Biochemistry, Transfusion and Regeneration Medicine Alessandria Hospital, Alessandria, Italy
| | - Roberta Libener
- Department of Clinical Biochemistry, Transfusion and Regeneration Medicine Alessandria Hospital, Alessandria, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, Chieti, Italy
| |
Collapse
|
2
|
Efstathiou N, Soubasi V, Koliakos G, Kantziou K, Kyriazis G, Slavakis A, Dermentzoglou V, Michalettou I, Drosou-Agakidou V. Beyond brain injury biomarkers: chemoattractants and circulating progenitor cells as biomarkers of endogenous rehabilitation effort in preterm neonates with encephalopathy. Front Pediatr 2023; 11:1151787. [PMID: 37292373 PMCID: PMC10244884 DOI: 10.3389/fped.2023.1151787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Preclinical work and studies in adults have shown that endogenous regeneration efforts that involve mobilization of progenitor cells take place after brain injury. However, kinetics of endogenous circulating progenitor cells (CPCs) in preterm neonates is not well described, particularly their possible role regarding brain injury and regeneration. We aimed to assess the kinetics of CPCs in neonates with encephalopathy of prematurity in relation to brain injury biomarkers, chemoattractants and relevant antenatal and postanal clinical factors, in an effort to outline the related pathophysiology. Materials and methods 47 preterm neonates (of 28-33 weeks GA) were enrolled: 31 newborns with no or minimal brain injury (grade I IVH) and 16 prematures with encephalopathy (grade III or IV IVH, PVL or infarct). Peripheral blood samples obtained on days 1, 3, 9, 18 and 45 after birth were analyzed using flow cytometry, focusing on EPCs (early and late Endothelial Progenitor Cells), HSCs (Hematopoietic Stem Cells) and VSELs (Very Small Embryonic-Like Stem Cells). At the same time-points serum levels of S100B, Neuron-specific Enolase (NSE), Erythropoietin (EPO), Insulin-like growth factor-1 (IGF-1) and SDF-1 were also measured. Neonates were assessed postnatally with brain MRI, and with Bayley III developmental test at 2 years of corrected age. Results Preterms with brain injury proved to have significant increase of S100B and NSE, followed by increase of EPO and enhanced mobilization mainly of HSCs, eEPCs and lEPCs. IGF-1 was rather decreased in this group of neonates. IGF-1 and most CPCs were intense decreased in cases of antenatal or postnatal inflammation. S100B and NSE correlated with neuroimaging and language scale in Bayley III test, providing good prognostic ability. Conclusion The observed pattern of CPCs' mobilization and its association with neurotrophic factors following preterm brain injury indicate the existence of an endogenous brain regeneration process. Kinetics of different biomarkers and associations with clinical factors contribute to the understanding of the related pathophysiology and might help to early discriminate neonates with adverse outcome. Timely appropriate enhancement of the endogenous regeneration effort, when it is suppressed and insufficient, using neurotrophic factors and exogenous progenitor cells might be a powerful therapeutic strategy in the future to restore brain damage and improve the neurodevelopmental outcome in premature infants with brain injury.
Collapse
Affiliation(s)
- N. Efstathiou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V. Soubasi
- 2nd Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G. Koliakos
- Biochemistry Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K. Kantziou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G. Kyriazis
- Immunology Laboratory, Pulmonology Department, Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A. Slavakis
- Biochemistry Department, Hippokration General Hospital, Thessaloniki, Greece
| | - V. Dermentzoglou
- Child Radiologist, Radiology Department, Agia Sofia Pediatric Hospital, Athens, Greece
| | - I. Michalettou
- Child Occupational Τherapist, Hippokration General Hospital, Thessaloniki, Greece
| | - V. Drosou-Agakidou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
4
|
S100B Maternal Blood Levels in Gestational Diabetes Mellitus Are Birthweight, Gender and Delivery Mode Dependent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031028. [PMID: 35162052 PMCID: PMC8834559 DOI: 10.3390/ijerph19031028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
Gestational Diabetes Mellitus (GDM) is one of the main causes of perinatal mortality/morbidity. Today, a parameter offering useful information on fetal central nervous system (CNS) development/damage is eagerly awaited. We investigated the role of brain-protein S100B in the maternal blood of GDM pregnancies by means of a prospective case–control study in 646 pregnancies (GDM: n = 106; controls: n = 530). Maternal blood samples for S100B measurement were collected at four monitoring time-points from 24 weeks of gestation to term. Data was corrected for gender and delivery mode and correlated with gestational age and weight at birth. Results showed higher (p < 0.05) S100B from 24 to 32 weeks and at term in GDM fetuses than controls. Higher (p < 0.05) S100B was observed in GDM male new-borns than in females from 24 to 32 weeks and at term, in GDM cases delivering vaginally than by caesarean section. Finally, S100B positively correlated with gestational age and weight at birth (R = 0.27; R = 0.37, respectively; p < 0.01). The present findings show the usefulness of S100B in CNS to monitor high-risk pregnancies during perinatal standard-of-care procedures. The results suggest that further investigations into its potential role as an early marker of CNS growth/damage in GDM population are needed.
Collapse
|
5
|
Swissa SS, Baron J, Tirosh D, Yaniv-Salem S, Shelef I, Hershkovitz R, Beharier O. S100B in maternal circulation of pregnancies complicated by FGR and brain sparing. Prenat Diagn 2021; 42:141-150. [PMID: 34530488 DOI: 10.1002/pd.6045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine whether the presence of brain sparing in fetal growth restricted (FGR) fetuses involves elevation of the cerebral injury biomarker S100B in maternal circulation. METHODS We included 63 women with suspected small for gestational age (SGA) fetuses between 24 and 35 +6/7 weeks of gestation. Maternal plasma angiogenic factors measurements and sonographic evaluation were performed at recruitment. Next, we subdivided our SGA cohort into three groups: SGA fetuses, FGR fetuses without brain-sparing, and FGR fetuses with brain-sparing (FGR-BS). Serum S100B concentration was calculated as S100B µg/L, S100B MoM, and the ratio S100B/ estimated fetal weight (EFW). We also report one case of S100B concentration surge in maternal serum following the diagnosis of fetal intraventricular hemorrhage (IVH). RESULTS The FGR-BS group had higher maternal S100B µg/L (p < 0.01, p < 0.05, respectively), S100B MoM (p < 0.001, p < 0.001, respectively), and S100B/EFW (p < 0.001, p < 0.01, respectively), compared to the SGA and FGR groups. In the case report, maternal serum S100B concentrations were 0.0346 µg/L before, and 0.0874 µg/L after IVH occurrence. CONCLUSIONS S100B concentration in maternal serum increased in pregnancies complicated by FGR and brain sparing. These results may substantiate in-utero cerebral injury and may explain the adverse neurocognitive outcomes reported for this group.
Collapse
Affiliation(s)
- Shani S Swissa
- Department of Obstetrics and Gynecology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joel Baron
- Department of Obstetrics and Gynecology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Tirosh
- Department of Obstetrics and Gynecology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shimrit Yaniv-Salem
- Department of Obstetrics and Gynecology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reli Hershkovitz
- Department of Obstetrics and Gynecology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Beharier
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Hamoud Y, Pekar JD, Drumez E, Lacan L, Maboudou P, De Jonckheere J, Storme L, Houfflin-Debarge V, Sharma D, Garabedian C, Ghesquière L. Changes in S100B and troponin levels in a fetal sheep model of worsening acidosis. Eur J Obstet Gynecol Reprod Biol 2021; 264:173-177. [PMID: 34304026 DOI: 10.1016/j.ejogrb.2021.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND S100B and cardiac troponin T (c-TnT) are relevant biomarkers at birth of hypoxic-ischemic encephalopathy (HIE) and myocardial ischemia secondary to metabolic acidosis during labor, respectively. The purpose was to assess in-utero changes in S100B and c-TnT levels in an experimental model of labor-like acidosis. METHODS Repeated umbilical cord occlusions (UCOs) in ten experiments were performed in mild (phase A, 1 UCO/5 mn), moderate (phase B, 1 UCO/3 mn), and severe (phase C, 1 UCO/2 mn) period. The experiments were stopped if arterial pH reached 6.90. RESULTS UCOs resulted in fetal acidosis with pH dropping to 6.99 ±0.13. When compared to the baseline period fetal S100B increased between phases A and B (7% ± 4 vs 17% ± 13, p = 0.030) and between phases A and C (7% ± 4 vs 24% ± 8, p < 0.001). Fetal c-TnT serum levels increased during occlusions: 102 ng/L (58-119) in phase A, vs 119 ng/L (103-198) in phase B vs 169 ng / L (128-268) in phase C (p < 0.05, for all). When compared to the baseline control period, fetal ΔcTnT was significantly modified throughout UCO series: 5.0% (-3; 45) in phase A, 51% (4; 263) in phase B, and 77% (56.5; 269) in phase C (p < 0.05 for all). CONCLUSIONS S100B and c-TnT increased when fetal acidosis occurred, which reflects the potential neurological damage and fetal cardiovascular adaptation.
Collapse
Affiliation(s)
- Yasmine Hamoud
- CHU Lille, Department of Obstetrics, F-59000 Lille, France.
| | - Jean David Pekar
- CHU Lille, Automated Biochemistry (UF 8832), F-59000 Lille, France
| | - Elodie Drumez
- University of Lille, CHU Lille, EA 2694 - Public Health Epidemiology and Quality of Care, F-59000 Lille, France
| | - Laure Lacan
- CHU Lille, Department of Neuropediatrics, F-59000 Lille, France
| | - Patrice Maboudou
- CHU Lille, Automated Biochemistry (UF 8832), F-59000 Lille, France
| | | | - Laurent Storme
- CHU Lille, Department of Neonatology, F-59000 Lille, France
| | | | - Dyuti Sharma
- CHU Lille, Department of Pediatric Surgery, F-59000 Lille, France
| | | | | |
Collapse
|
7
|
Gasparroni G, Graziosi A, Bersani I, Caulo M, Moataza B, Aboulgar H, Mufeed H, Iskander I, Kornacka M, Gruzfeld D, Dotta A, Savarese I, Chukhlantseva N, Tina LG, Nigro F, Livolti G, Galvano F, Di Battista C, D'Adamo E, Primavera AP, Lapergola G, Conte M, Salomone R, Perrotta M, Panichi D, Levantini G, Catenaro M, Strozzi C, Maconi A, Centini G, Chiarelli F, D'Antonio F, Gavilanes DAW, Gazzolo D. S100B protein, cerebral ultrasound and magnetic resonance imaging patterns in brain injured preterm infants. Clin Chem Lab Med 2021; 59:1527-1534. [PMID: 34008376 DOI: 10.1515/cclm-2021-0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The early detection of preterm infants (PI) at risk for intraventricular hemorrhage (IVH) and neurological sequelae still constitutes an unsolved issue. We aimed at validating the role of S100B protein in the early diagnosis and prognosis of IVH in PI by means of cerebral ultrasound (CUS) and magnetic resonance imaging (MRI) today considered standard of care procedures. METHODS We conducted an observational case-control study in 216 PI of whom 36 with IVH and 180 controls. Standard clinical, laboratory, radiological monitoring procedures and S100B urine measurement were performed at four time-points (first void, 24, 48, 96 h) after birth. Cerebral MRI was performed at 40-42 weeks of corrected gestational age. RESULTS Elevated (p<0.001, for all) S100B levels were observed in the IVH group at all monitoring time-point particularly at first void when standard monitoring procedures were still silent or unavailable. S100B measured at first void correlated (p<0.001) with the grade of hemorrhage by means of CUS and with the site and extension of neurological lesion (p<0.001, for all) as assessed by MRI. CONCLUSIONS The present results showing a correlation among S100B and CUS and MRI offer additional support to the inclusion of the protein in clinical daily management of cases at risk for IVH and adverse neurological outcome. The findings open the way to further investigations in PI aimed at validating new neurobiomarkers by means of S100B.
Collapse
Affiliation(s)
| | | | - Iliana Bersani
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Bashir Moataza
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hanna Aboulgar
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hala Mufeed
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Iman Iskander
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Maria Kornacka
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Darek Gruzfeld
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Andrea Dotta
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Immacolata Savarese
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Natalia Chukhlantseva
- Department of Neonatology, Neonatal Intensive Care Unit, Bambino Gesù; Children's Hospital, Rome, Italy
| | - Lucia Gabriella Tina
- Department of Maternal Fetal and Neonatal Health, G. Garibaldi Hospital, Catania, Italy
| | - Francesco Nigro
- Department of Maternal Fetal and Neonatal Health, G. Garibaldi Hospital, Catania, Italy
| | | | - Fabio Galvano
- Department of Biochemistry, Catania University, Catania, Italy
| | | | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | | | - Mariangela Conte
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Rita Salomone
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Marika Perrotta
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Daniele Panichi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | - Milena Catenaro
- Department of Pediatrics, G. d'Annunzio University, Chieti, Italy
| | - Chiara Strozzi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Giacomo Centini
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | | | - Francesco D'Antonio
- Department of Obstetrics and Gynecology, Centre for Fetal Care and High Risk Pregnancy, University G. d'Annunzio, Chieti, Italy
| | - Danilo A W Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
8
|
The Ca 2+-Binding S100B Protein: An Important Diagnostic and Prognostic Neurobiomarker in Pediatric Laboratory Medicine. Methods Mol Biol 2019; 1929:701-728. [PMID: 30710306 DOI: 10.1007/978-1-4939-9030-6_44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades a significant scientific effort has focused on projects regarding the use of neurobiomarkers in perinatal medicine with a view to understanding the mechanisms that interfere with physiological patterns of brain development and lead to ominous effects in several human diseases. Numerous potential neurobiomarkers have been proposed for use in monitoring high-risk fetuses and newborns, including markers of oxidative stress, neuroproteins, and vasoactive agents. Nonetheless, the use of these markers in clinical practice remains a matter of debate. Recently, the calcium-binding S100B protein has been proposed as being an ideal neurobiomarker, thanks to its simple availability and easy reproducibility, to the possibility of detecting it noninvasively in biological fluids with good reproducibility, and to the possibility of a longitudinal evaluation in relation to reference curves. The present chapter contains an overview of the most significant studies on the assessment of S100B in different biological fluids as a trophic factor and/or marker of brain damage in high-risk fetuses and newborns.
Collapse
|
9
|
Varrica A, Satriano A, Gavilanes ADW, Zimmermann LJ, Vles HJS, Pluchinotta F, Anastasia L, Giamberti A, Baryshnikova E, Gazzolo D. S100B increases in cyanotic versus noncyanotic infants undergoing heart surgery and cardiopulmonary bypass (CPB). J Matern Fetal Neonatal Med 2017; 32:1117-1123. [PMID: 29183208 DOI: 10.1080/14767058.2017.1401604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIMS S100B has been proposed as a consolidated marker of brain damage in infants with congenital heart disease (CHD) undergoing cardiac surgery and cardiopulmonary bypass (CPB). The present study aimed to investigate whether S100B blood levels in the perioperative period differed in infants complicated or not by cyanotic CHD (CHDc) and correlated with oxygenation status (PaO2). METHODS We conducted a case-control study of 48 CHD infants without pre-existing neurological disorders undergoing surgical repair and CPB. 24 infants were CHDc and 24 were CHD controls. Blood samples for S100B assessment were collected at six monitoring time-points: before the surgical procedure (T0), after sternotomy but before CPB (T1), at the end of the cross-clamp CPB phase (T2), at the end of CPB (T3), at the end of the surgical procedure (T4), at 24 h postsurgery (T5). RESULTS In the CHDc group, S100B multiples of median (MoM) were significantly higher (p < .05, for all) from T0 to T5. PaO2 was significantly lower (p < .05, for all) in CHDc infants at T0-T1 and at T4 while no differences (p > .05, for all) were found at T2, T3, T5. Linear regression analysis showed a positive correlation between S100B MoM at T3 and PaO2 (R = 0.84; p < .001). CONCLUSIONS The present data showing higher hypoxia/hyperoxia-mediated S100B concentrations in CHDc infants suggest that CHDc are more prone to perioperative brain stress/damage and suggest the usefulness of further investigations to detect the "optimal" PaO2 target in order to avoid the side effects associated with reoxygenation during CPB.
Collapse
Affiliation(s)
- Alessandro Varrica
- a Department of Pediatric Cardiac Surgery IRCCS San Donato Milanese Hospital , San Donato Milanese , Italy
| | - Angela Satriano
- a Department of Pediatric Cardiac Surgery IRCCS San Donato Milanese Hospital , San Donato Milanese , Italy
| | - Antonio D W Gavilanes
- b Department of Pediatrics, Neonatology and Child Neurology , Maastricht University , Maastricht , The Netherlands
| | - Luc J Zimmermann
- b Department of Pediatrics, Neonatology and Child Neurology , Maastricht University , Maastricht , The Netherlands
| | - Hans J S Vles
- b Department of Pediatrics, Neonatology and Child Neurology , Maastricht University , Maastricht , The Netherlands
| | - Francesca Pluchinotta
- a Department of Pediatric Cardiac Surgery IRCCS San Donato Milanese Hospital , San Donato Milanese , Italy
| | - Luigi Anastasia
- a Department of Pediatric Cardiac Surgery IRCCS San Donato Milanese Hospital , San Donato Milanese , Italy
| | - Alessandro Giamberti
- a Department of Pediatric Cardiac Surgery IRCCS San Donato Milanese Hospital , San Donato Milanese , Italy
| | - Ekaterina Baryshnikova
- a Department of Pediatric Cardiac Surgery IRCCS San Donato Milanese Hospital , San Donato Milanese , Italy
| | - Diego Gazzolo
- c Department of Maternal Fetal and Neonatal Medicine , C. Arrigo Children's Hospital , Alessandria , Italy.,d Neonatal Intensive Care Unit , G. d'Annunzio University of Chieti , Italy
| |
Collapse
|
10
|
Systemic inflammation combined with neonatal cerebellar haemorrhage aggravates long-term structural and functional outcomes in a mouse model. Brain Behav Immun 2017; 66:257-276. [PMID: 28755859 DOI: 10.1016/j.bbi.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. METHODS We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. RESULTS Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. CONCLUSIONS Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth.
Collapse
|
11
|
Serpero LD, Bianchi V, Pluchinotta F, Conforti E, Baryshnikova E, Guaschino R, Cassinari M, Trifoglio O, Calevo MG, Gazzolo D. S100B maternal blood levels are gestational age- and gender-dependent in healthy pregnancies. Clin Chem Lab Med 2017; 55:1770-1776. [PMID: 28282292 DOI: 10.1515/cclm-2016-1127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND S100B is a well-established biomarker of central nervous system (CNS) development and damage in the perinatal period. Because the fetal CNS induces an overproduction of S100B measurable in the maternal bloodstream we evaluated S100B protein in healthy pregnancies in order to provide a reference curve of the protein in the second and third trimesters and to provide information on CNS development when standard monitoring procedures could be silent or unavailable. METHODS Between July 2012 and December 2014 we conducted a prospective study in 1213 healthy pregnancies delivering healthy newborns. Maternal blood samples were collected for standard monitoring procedures and S100B assessment. S100B correlations with selected outcomes (gestational age at sampling, gender of fetus, gestational age and weight at birth, delivery mode) were calculated using multiple forward stepwise regression analysis. RESULTS S100B concentrations in the second and third trimesters of pregnancy were found to be gestational age-, gender- and delivery mode-dependent (p<0.05, for all). Multiple forward stepwise regression analysis with S100B as the dependent variable and gestational age at sampling, gender, delivery mode, gestational age and weight at birth as independent variables, showed a significant correlation between S100B and gestational age at sampling (R=0.13; p<0.001). CONCLUSIONS The present findings offering a S100B protein reference curve in maternal blood suggest that non-invasive fetal CNS monitoring is becoming feasible and open the way to further research in neuro-biomarker assessment in the maternal bloodstream.
Collapse
|
12
|
Zhang J, Li A, Song Z. Systemic LPS resulted in a transient hippocampus malfunction but a prolonged corpus callosum injury. BMC Anesthesiol 2017; 17:105. [PMID: 28806918 PMCID: PMC5557561 DOI: 10.1186/s12871-017-0396-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/06/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To investigate the effect of systemic lipopolysaccharide (LPS) on function of hippocampus and corpus callosum (CC) in adult rats. METHODS Adult rats with mature white matter tract were divided into systemic LPS and saline injection groups. Animal were euthanized following 3 daily injections (day 3) and 3-day after cessation of injections (day 6). At both time points, hippocampal long term potentiation (LTP) and CC compound action potentials (CAP) were recorded, beta amyloid precursor protein (β-APP) level in CC tissue was measured by Western blot, and microglia activation was examined by immunostaining and proportional area analysis. RESULTS Systemic LPS significantly decreased amplitude of both post tetanic potentiation (PTP) and LTP at day 3, but PTP and LTP turned to be normal at day 6. CAP was significantly declined at day 3 but was further declined at day 6. The β-APP levels in CC tissues of LPS injected rats were significantly higher than that of saline group at both time-points. Interestingly, proportional area measurement disclosed that microglial areas in both hippocampus and CC significantly expanded at day3, but at the day 6, microglial area decreased in hippocampus but further increased in CC. CONCLUSION Systemic LPS resulted in a transient hippocampus malfunction but a prolonged CC injury. Microglia activation may correlate with such LPS induced white matter injury.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, 410008, China
| | - Aiyuan Li
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
13
|
Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, Hoda MN, Dhandapani KM. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2614-2626. [PMID: 28533056 DOI: 10.1016/j.bbadis.2017.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term morbidity worldwide. Despite decades of pre-clinical investigation, therapeutic strategies focused on acute neuroprotection failed to improve TBI outcomes. This lack of translational success has necessitated a reassessment of the optimal targets for intervention, including a heightened focus on secondary injury mechanisms. Chronic immune activation correlates with progressive neurodegeneration for decades after TBI; however, significant challenges remain in functionally and mechanistically defining immune activation after TBI. In this review, we explore the burgeoning evidence implicating the acute release of damage associated molecular patterns (DAMPs), such as adenosine 5'-triphosphate (ATP), high mobility group box protein 1 (HMGB1), S100 proteins, and hyaluronic acid in the initiation of progressive neurological injury, including white matter loss after TBI. The role that pattern recognition receptors, including toll-like receptor and purinergic receptors, play in progressive neurological injury after TBI is detailed. Finally, we provide support for the notion that resident and infiltrating macrophages are critical cellular targets linking acute DAMP release with adaptive immune responses and chronic injury after TBI. The therapeutic potential of targeting DAMPs and barriers to clinical translational, in the context of TBI patient management, are discussed.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - Nancy M Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
14
|
Cho GJ, Hong HR, Hong SC, Oh MJ, Kim HJ. The neuroprotective effect of magnesium sulfate in preterm fetal mice. J Perinat Med 2015; 43:537-43. [PMID: 25503462 DOI: 10.1515/jpm-2014-0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the use of magnesium sulfate (MgSO4) as a neuroprotective agent in a mouse model of inflammation-associated and noninflammation-associated preterm birth. METHODS On embryonic day 15 of gestation, lipopolysaccharide (LPS) and mifepristone (RU486) were used, respectively, to create mouse models of inflammation and noninflammation-associated preterm birth. After intraperitoneal injection of LPS, RU486, or normal saline solution (NS), dams were randomized to intraperitoneal MgSO4 or NS injection. From the 6 treatment groups (NS+NS, LPS+NS, NS+MgSO4, LPS+MgSO4, RU486+NS and RU486+MgSO4), fetal brains were collected for Western blot analysis and neuronal cultures. Protein expression of S100B was assessed, and immunohistochemistry was performed to detect NeuN. The numbers of NeuN-labeled cells were counted using confocal laser scanning microscopy. RESULTS The expression of S100B significantly differed among the groups and was decreased in the LPS+MgSO4 group compared to the LPS+NS group. The expression of S100B did not differ between the RU486+NS and RU486+MgSO4 groups. NeuN-labeled cells were increased in the LPS+MgSO4 group compared with the LPS+NS group. NeuN-labeled cells were decreased in the RU486+MgSO4 group compared with the RU486+NS group. CONCLUSIONS We observed that prenatal treatment with MgSO4 was associated with decreased expression of S100B and increased numbers of NeuN-labeled cells in an inflammation-associated preterm mouse model but not in a noninflammation-associated preterm mouse model. Our results suggest that prenatal treatment of MgSO4 reduces inflammation-associated brain injury in fetal mice.
Collapse
|
15
|
Dean JM, Shi Z, Fleiss B, Gunn KC, Groenendaal F, van Bel F, Derrick M, Juul SE, Tan S, Gressens P, Mallard C, Bennet L, Gunn AJ. A Critical Review of Models of Perinatal Infection. Dev Neurosci 2015; 37:289-304. [PMID: 25720344 DOI: 10.1159/000370309] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/02/2014] [Indexed: 02/14/2025] Open
Abstract
One of the central, unanswered questions in perinatology is why preterm infants continue to have such poor long-term neurodevelopmental, cognitive and learning outcomes, even though severe brain injury is now rare. There is now strong clinical evidence that one factor underlying disability may be infection, as well as nonspecific inflammation, during fetal and early postnatal life. In this review, we examine the experimental evidence linking both acute and chronic infection/inflammation with perinatal brain injury and consider key experimental determinants, including the microglia response, relative brain and immune maturity and the pattern of exposure to infection. We highlight the importance of the origin and derivation of the bacterial cell wall component lipopolysaccharide. Such experimental paradigms are essential to determine the precise time course of the inflammatory reaction and to design targeted neuroprotective strategies to protect the perinatal brain from infection and inflammation.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Serpero LD, Pluchinotta F, Gazzolo D. The clinical and diagnostic utility of S100B in preterm newborns. Clin Chim Acta 2015; 444:193-8. [PMID: 25704302 DOI: 10.1016/j.cca.2015.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 11/18/2022]
Abstract
Preterm birth is still the most important cause of perinatal mortality and morbidity. Follow-up studies showed that the majority of neurological abnormalities during childhood are already present in the first week after birth. In this light, the knowledge of the timing of the insult and/or of the contributing factors is of utmost relevance in order to avoid adverse neurological outcome. Notwithstanding, the considerable advances in perinatal clinical care and monitoring, the early detection of cases at risk for brain damage is still a challenge because, when radiological pictures are still negative, brain damage may be already at a subclinical stage, with symptoms hidden by therapeutic strategies. Thus, it could be very relevant to measure quantitative parameters, such as neuroproteins, able to detect subclinical lesions at a stage when routine brain monitoring procedures are still silent. In the last decade, the assay of the brain-specific protein S100B in different biological fluids proved useful information on brain function and damage in the perinatal period. Therefore, the present study provides an overview of the most recent findings on S100B role as a reliable marker of brain development/damage in preterm high risk fetuses and newborns.
Collapse
Affiliation(s)
- Laura D Serpero
- Dept. of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy
| | - Francesca Pluchinotta
- Dept. of Pediatric Cardiovascular Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Italy
| | - Diego Gazzolo
- Dept. of Maternal Fetal and Neonatal Medicine C. Arrigo Children's Hospital, Alessandria, Italy.
| |
Collapse
|
17
|
Gazzolo D, Pluchinotta F, Bashir M, Aboulgar H, Said HM, Iman I, Ivani G, Conio A, Tina LG, Nigro F, Li Volti G, Galvano F, Michetti F, Di Iorio R, Marinoni E, Zimmermann LJ, Gavilanes ADW, Vles HJS, Kornacka M, Gruszfeld D, Frulio R, Sacchi R, Ciotti S, Risso FM, Sannia A, Florio P. Neurological abnormalities in full-term asphyxiated newborns and salivary S100B testing: the "Cooperative Multitask against Brain Injury of Neonates" (CoMBINe) international study. PLoS One 2015; 10:e0115194. [PMID: 25569796 PMCID: PMC4287626 DOI: 10.1371/journal.pone.0115194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 11/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Perinatal asphyxia (PA) is a leading cause of mortality and morbidity in newborns: its prognosis depends both on the severity of the asphyxia and on the immediate resuscitation to restore oxygen supply and blood circulation. Therefore, we investigated whether measurement of S100B, a consolidated marker of brain injury, in salivary fluid of PA newborns may constitute a useful tool for the early detection of asphyxia-related brain injury. METHODS We conducted a cross-sectional study in 292 full-term newborns admitted to our NICUs, of whom 48 suffered PA and 244 healthy controls admitted at our NICUs. Saliva S100B levels measurement longitudinally after birth; routine laboratory variables, neurological patterns, cerebral ultrasound and, magnetic resonance imaging were performed. The primary end-point was the presence of neurological abnormalities at 12-months after birth. RESULTS S100B salivary levels were significantly (P<0.001) higher in newborns with PA than in normal infants. When asphyxiated infants were subdivided according to a good (Group A; n = 15) or poor (Group B; n = 33) neurological outcome at 12-months, S100B was significantly higher at all monitoring time-points in Group B than in Group A or controls (P<0.001, for all). A cut-off >3.25 MoM S100B achieved a sensitivity of 100% (CI5-95%: 89.3%-100%) and a specificity of 100% (CI5-95%: 98.6%-100%) as a single marker for predicting the occurrence of abnormal neurological outcome (area under the ROC curve: 1.000; CI5-95%: 0.987-1.0). CONCLUSIONS S100B protein measurement in saliva, soon after birth, is a useful tool to identify which asphyxiated infants are at risk of neurological sequelae.
Collapse
Affiliation(s)
- Diego Gazzolo
- Department of Maternal, Fetal and Neonatal Medicine, “C. Arrigo” Children’s Hospital Alessandria, Italy
- * E-mail:
| | - Francesca Pluchinotta
- Department of Cardiology and Laboratory Reasearch S. Donato Milanese University Hospital, Milan, Italy
| | - Moataza Bashir
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Hanna Aboulgar
- Department of Neonatology, Cairo University, Cairo, Egypt
| | | | - Iskander Iman
- Department of Neonatology, Cairo University, Cairo, Egypt
| | - Giorgio Ivani
- Pediatric Intensive Care Unit, “Regina Margherita” Children’s Hospital Turin, Turin, Italy
| | - Alessandra Conio
- Pediatric Intensive Care Unit, “Regina Margherita” Children’s Hospital Turin, Turin, Italy
| | - Lucia Gabriella Tina
- Department of Maternal Fetal and Neonatal Health “G. Garibaldi” Hospital, Catania, Italy
| | - Francesco Nigro
- Department of Maternal Fetal and Neonatal Health “G. Garibaldi” Hospital, Catania, Italy
| | | | - Fabio Galvano
- Department of Biochemistry, Catania University, Catania, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Catholic University, Rome, Italy
| | - Romolo Di Iorio
- Laboratory of Perinatal Medicine, Department of Obstetrics and Gynecology, University “La Sapienza”, Rome, Italy
| | - Emanuela Marinoni
- Laboratory of Perinatal Medicine, Department of Obstetrics and Gynecology, University “La Sapienza”, Rome, Italy
| | - Luc J. Zimmermann
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Antonio D. W. Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Hans J. S. Vles
- Department of Child Neurology, Maastricht University, Maastricht, The Netherlands
| | - Maria Kornacka
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Darek Gruszfeld
- Department of Neonatology and Intensive Care of Neonate, Warsaw University, Warsaw, Poland
| | - Rosanna Frulio
- Department of Pediatrics “G. Gaslini” Children’s University Hospital, Genoa, Italy
| | - Renata Sacchi
- Department of Pediatrics “G. Gaslini” Children’s University Hospital, Genoa, Italy
| | - Sabina Ciotti
- Department of Pediatrics “G. Gaslini” Children’s University Hospital, Genoa, Italy
| | - Francesco M. Risso
- Department of Pediatrics “G. Gaslini” Children’s University Hospital, Genoa, Italy
| | - Andrea Sannia
- Department of Pediatrics “G. Gaslini” Children’s University Hospital, Genoa, Italy
| | - Pasquale Florio
- UOC of Obstetrics and Gynecology, “S. Iacopo” Hospital, Pistoia, Italy
| |
Collapse
|
18
|
Abstract
Abstract
BACKGROUND
Central nervous system (CNS) infections present a major burden of disease worldwide and are associated with high rates of mortality and morbidity. Swift diagnosis and initiation of appropriate treatment are vital to minimize the risk of poor outcome; however, tools are lacking to accurately diagnose infection, assess injury severity, and predict outcome. Biomarkers of structural neurological injury could provide valuable information in addressing some of these challenges.
CONTENT
In this review, we summarize experimental and clinical research on biomarkers of neurological injury in a range of CNS infectious diseases. Data suggest that in both adults and children, the biomarkers S100B and neuron-specific enlose (NSE), among others, can provide insight into the pathophysiology of CNS infection and injury severity, evolution, and response to treatment. Research into the added utility of combining a panel of biomarkers and in assessing biomarker association with clinical and radiological outcomes warrants further work. Various factors, including age, the establishment of normative values, and comparison of biomarker concentrations across different testing platforms still present challenges in biomarker application.
SUMMARY
Research regarding the value of biomarkers in CNS infections is still in its infancy. However, early evidence supports their utility in diagnosis and prognosis, and potentially as effective surrogate end points in the assessment of novel interventions.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- Paediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Anthony A Figaji
- Paediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Yao B, Zhang LN, Ai YH, Liu ZY, Huang L. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res 2014; 39:1263-9. [PMID: 24760429 DOI: 10.1007/s11064-014-1308-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/27/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
S100β and neuron-specific enolase (NSE) are brain injury biomarkers, mainly used in brain trauma, cerebral stroke and hypoxic ischemia encephalopathy. The aim of this study was to study the clinical significance of serum S100β and NSE in diagnosing sepsis-associated encephalopathy (SAE) and predicting its prognosis. This was a prospective and observational study. Clinical data of septic patients were collected within 24 h after ICU admission from May 2012 to April 2013. We evaluated the level of consciousness twice per day. SAE was defined as cerebral dysfunction in the presence of sepsis that fulfilled the exclusion criteria. The infection biochemical indicators, Glasgow coma scale (GCS) score, acute physiology and chronic health evaluation score II, serum NSE and S100β were newly measured or evaluated for SAE patients. Finally, hospital mortality, bacteriological categories, length of ICU stay and length of hospital stay were also recorded for all enrolled patients. The data was analyzed with the Chi square test, two-sample t test or Mann-Whitney U test between two groups. The correlation between two factors was analyzed using the Pearson or Spearman analysis. Receiver operating characteristic (ROC) curves were used to determine the ability of S100β and NSE in diagnosing SAE and predicting the hospital mortality. In addition, cut-off points were obtained from the curves to determine the highest sum of sensitivity and specificity. Of 112 enrolled patients, 48 patients were diagnosed with SAE. The serum S100β and NSE concentrations in SAE patients were both significantly higher than in non-SAE patients 0.306 (IQR 0.157-0.880) μg/L vs. 0.095 (IQR 0.066-0.177) μg/L, 24.87 (IQR 31.73-12.73) ng/mL vs. 15.49 (IQR 9.88-21.46) ng/mL, P < 0.01]. GCS scores were related more closely to S100β than NSE (-0.595 vs. -0.337). S100β levels of 0.131 μg/L diagnosed SAE with 67.2% specificity and 85.4% sensitivity in the ROC curve, the area under the curve was 0.824 (95% confidence interval 0.750-0.898). NSE levels of 24.15 ng/mL diagnosed SAE with 82.8% specificity and 54.2% sensitivity, and the area under the curve was 0.664 (95 % confidence interval 0.561-0.767). In addition, the area under the curve for S100β for predicting hospital mortality was larger than for NSE (0.730 vs. 0.590). Serum S100β concentrations in SAE patients were significantly higher than in non-SAE patients. These may be related to the severity of SAE and may predict the outcome of sepsis. The efficacy and sensitivity of serum S100β in diagnosing SAE were high, but it had a low specificity. Moreover, compared to NSE, serum S100β was better for both diagnosing SAE and predicting the outcome of sepsis.
Collapse
Affiliation(s)
- Bo Yao
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | | | | | | |
Collapse
|
20
|
Beharier O, Shusterman E, Eshcoli T, Szaingurten-Solodkin I, Aricha-Tamir B, Weintraub AY, Sheiner E, Holcberg G, Hershkovitz R. Detection of S100B in maternal blood before and after fetal death. Prenat Diagn 2013; 34:94-7. [PMID: 24178516 DOI: 10.1002/pd.4266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/23/2013] [Accepted: 10/21/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND S100B is a brain damage biomarker. When measured immediately after birth, it reflects neonatal brain damage following asphyxia. In this study, we used feticide as a novel model of fetal brain damage. We examined whether such damage is reflected by a rise in S100B in maternal blood before delivery. METHODS Eight pregnant women were recruited between January and July 2012. Maternal blood samples were drawn before and after feticide at predetermined time points (0, 15, 30, 60, 120, and 240 min). S100B, lactate dehydrogenase, creatine kinase, and creatinine concentrations were measured by standard human ELISA and chemical analyzer. RESULTS No significant difference was noted between S100B levels before and after feticide, neither in non-specific cell death markers (lactate dehydrogenase and creatine kinase), which remained within normal range. S100B ranged between 0.015-0.04 µg/L through all the predetermined time points. CONCLUSION No statistically significant differences were demonstrated in S100B levels before and after feticide.
Collapse
Affiliation(s)
- Ofer Beharier
- Department of Obstetrics & Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mathai S, Booth LC, Davidson JO, Drury PP, Fraser M, Jensen EC, George S, Naylor A, Gunn AJ, Bennet L. Acute on chronic exposure to endotoxin in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012; 304:R189-97. [PMID: 23235324 DOI: 10.1152/ajpregu.00388.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute, high-dose exposure to endotoxin lipopolysaccharide (LPS) in preterm fetal sheep can trigger periventricular white matter lesions (PVL), in association with severe hypotension/hypoxemia and significant mortality. Intriguingly, however, chronic or repeated exposure to LPS can induce tachyphylaxis. We therefore tested the hypothesis that progressive, acute on chronic fetal infection would be associated with white matter injury with little fetal mortality. Chronically instrumented preterm (0.7 gestational age) fetal sheep were exposed to a continuous low-dose LPS infusion (100 ng over 24 h, followed by 250 ng/24 h for 96 h) or saline. Boluses of 1 μg LPS or saline were given at 48, 72, and 96 h; sheep were killed at day 10. Six of 11 fetal sheep exposed to saline infusion + LPS boluses died 4-7 h after the first bolus. In contrast, there was no fetal mortality after saline infusions alone (n = 9), low-dose LPS infusion + saline boluses (n = 5), or low-dose LPS + LPS boluses (n = 9). Low-dose LPS infusion + LPS boluses was associated with greater microglial induction than low-dose LPS + saline boluses but a similar area of periventricular white matter inflammation. One fetus developed severe focal white matter necrosis after LPS infusion + boluses. The acute cardiovascular compromise associated with high-dose, acute exposure to LPS is markedly attenuated by previous low-dose infusions, with limited apparent exacerbation of periventricular white matter injury compared with low-dose infusion alone.
Collapse
Affiliation(s)
- Sam Mathai
- Department of Physiology, the University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kuypers E, Ophelders D, Jellema RK, Kunzmann S, Gavilanes AW, Kramer BW. White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: lessons from experimental ovine models. Early Hum Dev 2012; 88:931-6. [PMID: 23078831 DOI: 10.1016/j.earlhumdev.2012.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chorioamnionitis and fetal sepsis can induce a fetal inflammatory response syndrome (FIRS) which is closely related to the development of white matter injury in the fetal brain. Large epidemiological studies support the link between FIRS and fetal brain injury with a clear association between the presence of in utero inflammation and neurodevelopmental complications such as cerebral palsy, autism and cognitive impairments later in life. Translational animal models of chorioamnionitis and fetal sepsis are essential in understanding the underlying pathophysiological mechanisms of fetal brain injury after exposure to intra-uterine inflammation. Concerning this aspect, ovine models have high translational value since neurodevelopment in sheep closely resembles the human situation. In this article, we will review clinical and experimental evidence for the link between FIRS and white matter injury in the fetal brain. With respect to experimental findings, we will particularly focus on the lessons learned from ovine models of chorioamnionitis and fetal sepsis. We also highlight two key players implied in the pathophysiology of white matter injury after in utero exposure to inflammation.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Bennet L, Booth LC, Drury PP, Quaedackers JSL, Gunn AJ. Preterm neonatal cardiovascular instability: Does understanding the fetus help evaluate the newborn? Clin Exp Pharmacol Physiol 2012; 39:965-72. [DOI: 10.1111/j.1440-1681.2012.05744.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Lindsea C Booth
- Neurobiology Division; Florey Neuroscience Institutes; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Josine SL Quaedackers
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
24
|
Keogh MJ, Bennet L, Drury PP, Booth LC, Mathai S, Naylor AS, Fraser M, Gunn AJ. Subclinical exposure to low-dose endotoxin impairs EEG maturation in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012; 303:R270-8. [PMID: 22696578 DOI: 10.1152/ajpregu.00216.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.
Collapse
Affiliation(s)
- Michael J Keogh
- Department of Physiology, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Risso FM, Serpero LD, Zimmermann LJ, Gavilanes AW, Frulio R, Michetti F, Florio P, Bashir M, Iskander I, Mufeed H, Aboulgar H, Gazzolo D. Perinatal asphyxia: Kidney failure does not affect S100B urine concentrations. Clin Chim Acta 2012; 413:150-3. [PMID: 21982917 DOI: 10.1016/j.cca.2011.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 12/01/2022]
|
26
|
Inflammatory-induced hibernation in the fetus: priming of fetal sheep metabolism correlates with developmental brain injury. PLoS One 2011; 6:e29503. [PMID: 22242129 PMCID: PMC3248450 DOI: 10.1371/journal.pone.0029503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023] Open
Abstract
Prenatal inflammation is considered an important factor contributing to preterm birth and neonatal mortality and morbidity. The impact of prenatal inflammation on fetal bioenergetic status and the correlation of specific metabolites to inflammatory-induced developmental brain injury are unknown. We used a global metabolomics approach to examine plasma metabolites differentially regulated by intrauterine inflammation. Preterm-equivalent sheep fetuses were randomized to i.v. bolus infusion of either saline-vehicle or LPS. Blood samples were collected at baseline 2 h, 6 h and daily up to 10 days for metabolite quantification. Animals were killed at 10 days after LPS injection, and brain injury was assessed by histopathology. We detected both acute and delayed effects of LPS on fetal metabolism, with a long-term down-regulation of fetal energy metabolism. Within the first 3 days after LPS, 121 metabolites were up-regulated or down-regulated. A transient phase (4–6 days), in which metabolite levels recovered to baseline, was followed by a second phase marked by an opposing down-regulation of energy metabolites, increased pO2 and increased markers of inflammation and ADMA. The characteristics of the metabolite response to LPS in these two phases, defined as 2 h to 2 days and at 6–9 days, respectively, were strongly correlated with white and grey matter volumes at 10 days recovery. Based on these results we propose a novel concept of inflammatory-induced hibernation of the fetus. Inflammatory priming of fetal metabolism correlated with measures of brain injury, suggesting potential for future biomarker research and the identification of therapeutic targets.
Collapse
|
27
|
Abstract
Cerebral hypothermia reduces brain injury and improves behavioral recovery after hypoxia-ischemia (HI) at birth. However, using current enrolment criteria many infants are not helped, and conversely, a significant proportion of control infants survive without disability. In order to further improve treatment we need better biomarkers of injury. A 'true' biomarker for the phase of evolving, 'treatable' injury would allow us to identify not only whether infants are at risk of damage, but also whether they are still able to benefit from intervention. Even a less specific measure that allowed either more precise early identification of infants at risk of adverse neurodevelopmental outcome would reduce the variance of outcome of trials, improving trial power while reducing the number of infants unnecessarily treated. Finally, valid short-term surrogates for long term outcome after treatment would allow more rapid completion of preliminary evaluation and thus allow new strategies to be tested more rapidly. Experimental studies have demonstrated that there is a relatively limited 'window of opportunity' for effective treatment (up to about 6-8h after HI, the 'latent phase'), before secondary cell death begins. We critically evaluate the utility of proposed biochemical, electronic monitoring, and imaging biomarkers against this framework. This review highlights the two central limitations of most presently available biomarkers: that they are most precise for infants with severe injury who are already easily identified, and that their correlation is strongest at times well after the latent phase, when injury is no longer 'treatable'. This is an important area for further research.
Collapse
Affiliation(s)
- L. Bennet
- Corresponding author. Dr Laura Bennet, Professor, Fetal Physiology and Neuroscience Group Department of Physiology, The University of Auckland, Private Bag 92019 Auckland, New Zealand Tel.: +64 9 373 7599 ext. 84890; fax: +64 9 373 7499. (L. Bennet)
| | | | | |
Collapse
|
28
|
Bennet L, Cowie RV, Stone PR, Barrett R, Naylor AS, Blood AB, Gunn AJ. The neural and vascular effects of killed Su-Streptococcus pyogenes (OK-432) in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2010; 299:R664-72. [PMID: 20484698 DOI: 10.1152/ajpregu.00116.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fetal exposure to inflammatory mediators is associated with a greater risk of brain injury and may cause endothelial dysfunction; however, nearly all the evidence is derived from gram-negative bacteria. Intrapleural injections of OK-432, a killed Su-strain of Streptococcus pyogenes, has been used to treat fetal chylothorax. In this study, we evaluated the neural and cardiovascular effects of OK-432 in preterm fetal sheep (104 +/- 1 days, term 147 days). OK-432 (0.1 mg, n = 6) or saline vehicle (n = 7) was infused in the fetal pleura, and fetuses were monitored for 7 days. Blood samples were taken routinely for plasma nitrite measurement. Fetal brains were taken for histological assessment at the end of the experiment. Between 3 and 7 h postinjection, OK-432 administration was associated with transient suppression of fetal body and breathing movements and electtroencephalogram activity (P < 0.05), increased carotid and femoral vascular resistance (P < 0.05), but no change in blood pressure. Brain activity and behavior then returned to normal except in one fetus that developed seizures. OK-432 fetuses showed progressive, sustained vasodilatation (P < 0.05), with lower blood pressure after 4 days (P < 0.05), but normal heart rate. There were no changes in plasma nitrite levels. Histological studies showed bilateral infarction in the dorsal limb of the hippocampus of the fetus that developed seizures, but no injury in other fetuses. We conclude that a single low-dose injection of OK-432 can be associated with risk of focal cerebral injury in the preterm fetus and chronic central and peripheral vasodilatation that does not appear to be mediated by nitric oxide.
Collapse
Affiliation(s)
- L Bennet
- Department of Physiology, The University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|