1
|
Hoshino Y, Uchida T. Prolyl Isomerase, Pin1, Controls Meiotic Progression in Mouse Oocytes. Cells 2022; 11:cells11233772. [PMID: 36497033 PMCID: PMC9739419 DOI: 10.3390/cells11233772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During meiotic maturation, accurate progression of meiosis is ensured by multiple protein kinases and by signal transduction pathways they are involved in. However, the mechanisms regulating the functions of phosphorylated proteins are unclear. Herein, we investigated the role of Pin1, a peptidyl-prolyl cis-trans isomerase family member that regulates protein functions by altering the structure of the peptide bond of proline in phosphorylated proteins in meiosis. First, we analyzed changes in the expression of Pin1 during meiotic maturation and found that although its levels were constant, its localization was dynamic in different stages of meiosis. Furthermore, we confirmed that the spindle rotates near the cortex when Pin1 is inhibited by juglone during meiotic maturation, resulting in an error in the extrusion of the first polar body. In Pin1-/- mice, frequent polar body extrusion errors were observed in ovulation, providing insights into the mechanism underlying the errors in the extrusion of the polar body. Although multiple factors and mechanisms might be involved, Pin1 functions in meiosis progression via actin- and microtubule-associated phosphorylated protein targets. Our results show that functional regulation of Pin1 is indispensable in oocyte production and should be considered while developing oocyte culture technologies for reproductive medicine and animal breeding.
Collapse
Affiliation(s)
- Yumi Hoshino
- Laboratory of Animal Reproduction, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima 739-8528, Japan
- Laboratory of Reproductive Biology, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan
- Correspondence:
| | - Takafumi Uchida
- Laboratory of Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555, Japan
| |
Collapse
|
2
|
Watanabe C, Shu GL, Giltiay NV, Clark EA. Regulation of B-lineage cells by caspase 6. Immunol Cell Biol 2018; 96:1072-1082. [PMID: 29863787 DOI: 10.1111/imcb.12172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
The caspase (Casp) family of proteases regulate both lymphocyte apoptosis and activation. Here, we show that Casp6 regulates early B-cell development. One-week-old Casp6 knockout (Casp6 KO) mice have significantly more splenic B-cell subsets than wild-type (WT) mice. Adult Casp6 KO mice have normal levels of total splenic B cells but have increased numbers of B1a B cells and CD43+ "transitional" or splenic red pulp (RP) B cells. These results suggested that Casp6 may function to control B-cell numbers under nonhomeostatic conditions and during B-cell development. Consistent with this model, reconstitution of B cells was dysregulated in Casp6 KO mice after sublethal irradiation. Furthermore, bone marrow pro-B, pre-B and immature B-cell numbers were significantly higher in 1-week-old Casp6 KO mice than in 1-week-old WT mice. Casp6 KO pro-B cells proliferated more in response to IL-7 than WT pro-B cells, suggesting that Casp6 regulates early B-cell responses to IL-7. Indeed, adult and aged Casp6 KO mice had elevated numbers of IL-7αR+ Sca1+ precursors of common lymphoid progenitors, suggesting Casp6 may help regulate progenitors of B cells and early B-lineage cells. Casp6 regulates B-cell programs both during early development and after antigen stimulation in the periphery.
Collapse
Affiliation(s)
- Chie Watanabe
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Geraldine L Shu
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Natalia V Giltiay
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
3
|
Kumar S, Dholpuria S, Chaubey GK, Kumar R, Datta TK. Assessment of nuclear membrane dynamics using anti-lamin staining offers a clear cut evidence of germinal vesicle breakdown in buffalo oocytes. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Vitrification of immature and in vitro matured bovine cumulus-oocyte complexes: Effects on oocyte structure and embryo development. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Borsos M, Torres-Padilla ME. Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev 2016; 30:611-21. [PMID: 26980186 PMCID: PMC4803048 DOI: 10.1101/gad.273805.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, epigenetic reprogramming, the acquisition and loss of totipotency, and the first cell fate decision all occur within a 3-d window after fertilization from the one-cell zygote to the formation of the blastocyst. These processes are poorly understood in molecular detail, yet this is an essential prerequisite to uncover principles of stem cells, chromatin biology, and thus regenerative medicine. A unique feature of preimplantation development is the drastic genome-wide changes occurring to nuclear architecture. From studying somatic and in vitro cultured embryonic stem cells (ESCs) it is becoming increasingly established that the three-dimensional (3D) positions of genomic loci relative to each other and to specific compartments of the nucleus can act on the regulation of gene expression, potentially driving cell fate. However, the functionality, mechanisms, and molecular characteristics of the changes in nuclear organization during preimplantation development are only now beginning to be unraveled. Here, we discuss the peculiarities of nuclear compartments and chromatin organization during mammalian preimplantation development in the context of the transition from totipotency to pluripotency.
Collapse
Affiliation(s)
- Máté Borsos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U964, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale F-67404 Illkirch, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U964, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale F-67404 Illkirch, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 München, Germany
| |
Collapse
|
6
|
Lian HY, Jiao GZ, Wang HL, Tan XW, Wang TY, Zheng LL, Kong QQ, Tan JH. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model. Biol Reprod 2014; 91:56. [PMID: 25061094 DOI: 10.1095/biolreprod.114.120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF.
Collapse
Affiliation(s)
- Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Qiao-Qiao Kong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| |
Collapse
|
7
|
Rodler D, Sinowatz F. Expression of intermediate filaments in the Balbiani body and ovarian follicular wall of the Japanese quail (Coturnix japonica). Cells Tissues Organs 2013; 197:298-311. [PMID: 23391820 DOI: 10.1159/000346048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
In the present study, we examined the distribution of 6 groups of intermediate filaments (IFs; cytokeratins, CKs, vimentin, synemin, desmin, glial fibrillary acidic protein and lamins) in oocytes and follicular walls of the Japanese quail (Coturnix japonica) during their development using immunohistochemical and ultrastructural techniques. A distinctly vimentin- and synemin-positive Balbiani body, which is a transient accumulation of organelles (mitochondria, Golgi complex and endoplasmic reticulum) that occurs in the oocytes of all vertebrates including birds, could be detected in the oocytes of primordial and early pre-vitellogenic follicles. In larger pre-vitellogenic follicles, the Balbiani body has dispersed and the positivity of the granulosa cells appeared to concentrate in the basal portion of their cytoplasm. Our ultrastructural data demonstrated that the matrix of the Bal-biani body consists of fine IFs, which may play a role in the formation and dispersion of the Balbiani body. Of the CKs studied (panCK, CK5, CK7, CK8, CK14, CK15, CK18 and CK19), only CK5 showed a slight positive staining in both the theca externa and the Balbiani bodies of pre-vitellogenic oocytes. In conclusion, our data, which describe the changes in avian IF protein expression during folliculogenesis, suggest that the functions of the IFs (vimentin and synemin) of oocytes and follicular walls are not primarily mechanical but may be involved in the transient tethering of mitochondria in the area of the Balbiani body and in the gain of endocrine competence during the differentiation of granulosa cells.
Collapse
Affiliation(s)
- Daniela Rodler
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, University of Munich, DE–80539 Munich, Germany
| | | |
Collapse
|
8
|
Wendl J, Ebach K, Rodler D, Kenngott RAM. Immunocytochemical localization of cytoplasmic and nuclear intermediate filaments in the bovine ovary during folliculogenesis. Anat Histol Embryol 2012; 41:190-201. [PMID: 22250786 DOI: 10.1111/j.1439-0264.2011.01123.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/01/2011] [Indexed: 11/30/2022]
Abstract
The cellular cytoskeleton is composed of three fibrillar systems, namely actin microfilaments, microtubules and intermediate filaments (IFs). It not only is a structural system, which mediates functional compartmentalization, but also contributes to many cellular processes such as transport, mitosis, secretion, formation of cell extensions, intercellular communication and apoptosis. In this study, we have examined the distribution of four groups of IFs [cytokeratins (CKs), vimentin, desmin and lamins] in the somatic and germinal cells of the bovine ovary using RT-PCR and immunohistochemical techniques. Using RT-PCR, specific transcripts for all intermediate proteins studied (CK8, CK18, desmin, vimentin, lamin A/C and lamin B1) were detected. A characteristic immunohistochemical staining pattern was observed for the different IFs within the ovary. In this study, we used antibodies against type I CK (acidic CKs: CK14, CK18 and CK19) and type II CK (basic CKs: CK5 and CK8). Among these, only antibodies against CK18 gave a characteristic pattern of immunostaining in the ovary, which included the surface epithelium, the follicle cells, the endothelium of blood vessels and rete ovarii. Antibodies against all other CKs resulted in a weak staining of a limited number of cellular structures (CK5 and CK19) or were completely negative (CK8 and CK14, apart from the surface epithelium). Vimentin antibodies resulted occasionally in a weak staining of the granulosa cells of primary and secondary follicles. In late secondary follicles, the basal and the most apical follicle cells contacting the zona pellucida usually showed a marked immunostaining for vimentin. In antral follicles, three different immunostaining patterns for vimentin were observed. Desmin immunostaining was confined to the smooth muscle cells of blood vessels. Although mRNA for lamin A/C and lamin B1 could be demonstrated using RT-PCR, no immunostaining was found for lamins, neither in the follicle cells nor in the oocytes.
Collapse
Affiliation(s)
- J Wendl
- Lehrstuhl für Anatomie, Histologie und Embryologie, Department of Veterinary Sciences, LMU München, Munich, Germany
| | | | | | | |
Collapse
|
9
|
Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 2010; 8. [PMID: 20808952 PMCID: PMC2923083 DOI: 10.1371/journal.pbio.1000453] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 07/02/2010] [Indexed: 11/19/2022] Open
Abstract
Conditional knockout mouse strategies identify the histone methyltranferase MLL2 as a key player in epigenetic reprogramming of female gametes. During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4) methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1) bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2) the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN) chromatin configuration; (3) oocyte survival; and (4) normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development. It is well established that gametes and early mammalian embryos undergo extensive epigenetic changes, which are changes in phenotype or gene expression that do not entail changes in DNA sequence. However, the machinery responsible for epigenetic modification in these situations is poorly understood. In mice, we conditionally deleted the histone 3 lysine 4 (H3K4) methyltransferase Mll2, an enzyme that alters DNA structure and packaging, either in gametes or in somatic cells of the ovary and also produced a mouse hypomorph expressing low levels of MLL2. We show that MLL2 is required in oocytes during gametogenesis and is also needed as a maternally derived factor during early development. Oocytes deficient in Mll2 display decreased methylation of H3K4 (H3K4me3) and show abnormal maturation and gene expression, in particular of pro-apoptotic factors. In addition, we demonstrate that embryonic genome activation is compromised in the absence of Mll2. Together our results identify MLL2 as one of the key players in the epigenetic reprogramming required for female fertility in the mouse.
Collapse
Affiliation(s)
- Claudia V. Andreu-Vieyra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruihong Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Julio E. Agno
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stefan Glaser
- Genomics, BioInnovationsZentrum, Technische Universitaet Dresden, Dresden, Germany
- Walter and Eliza Hall Institute, Melbourne, Australia
| | | | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Technische Universitaet Dresden, Dresden, Germany
- * E-mail: (MMM); (AFS)
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MMM); (AFS)
| |
Collapse
|
10
|
Baba T, Shima Y, Owaki A, Mimura J, Oshima M, Fujii-Kuriyama Y, Morohashi KI. Disruption of aryl hydrocarbon receptor (AhR) induces regression of the seminal vesicle in aged male mice. Sex Dev 2008; 2:1-11. [PMID: 18418030 DOI: 10.1159/000117714] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates diverse dioxin toxicities. Despite mediating the adverse effects, the AhR gene is conserved among animal species, suggesting important physiological functions for AhR. In fact, a recent study revealed that AhR has an intrinsic function in female reproduction, though its role in male reproduction is largely unknown. In this study, we show age-dependent regression of the seminal vesicles, probably together with the coagulating gland, in AhR(-/-) male mice. Knockout mice had abnormal vaginal plugs, low sperm counts in the epididymis, and low fertility. Moreover, serum testosterone concentrations and expression of steroidogenic 3betahydroxysteroiddehydrogenase (3betaHsd) and steroidogenic acute regulatory protein (StAR) in testicular Leydig cells were decreased in AhR(-/-) males. Taken together, our results suggest that impaired testosterone synthesis in aged mice induces regression of seminal vesicles and the coagulating glands. Such tissue disappearance likely resulted in abnormal vaginal plug formation, and eventually in low fertility. Together with previous findings demonstrating AhR function in female reproduction, AhR has essential functions in animal reproduction in both sexes.
Collapse
Affiliation(s)
- T Baba
- Division of Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama, Myodaiji-cho, Okazaki, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|