1
|
Luo Y, Li J, Zheng L, Reyimjan Y, Ma Y, Huang S, Liu H, Zhou G, Bai J, Zhu Y, Sun Y, Zou X, Hou Y, Fu X. Procyanidin B2 improves developmental capacity of bovine oocytes via promoting PPARγ/UCP1-mediated uncoupling lipid catabolism during in vitro maturation. Cell Prolif 2024; 57:e13687. [PMID: 38864666 PMCID: PMC11533046 DOI: 10.1111/cpr.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic balance is essential for oocyte maturation and acquisition of developmental capacity. Suboptimal conditions of in vitro cultures would lead to lipid accumulation and finally result in disrupted oocyte metabolism. However, the effect and mechanism underlying lipid catabolism in oocyte development remain elusive currently. In the present study, we observed enhanced developmental capacity in Procyanidin B2 (PCB2) treated oocytes during in vitro maturation. Meanwhile, reduced oxidative stress and declined apoptosis were found in oocytes after PCB2 treatment. Further studies confirmed that oocytes treated with PCB2 preferred to lipids catabolism, leading to a notable decrease in lipid accumulation. Subsequent analyses revealed that mitochondrial uncoupling was involved in lipid catabolism, and suppression of uncoupling protein 1 (UCP1) would abrogate the elevated lipid consumption mediated by PCB2. Notably, we identified peroxisome proliferator-activated receptor gamma (PPARγ) as a potential target of PCB2 by docking analysis. Subsequent mechanistic studies revealed that PCB2 improved oocyte development capacity and attenuated oxidative stress by activating PPARγ mediated mitochondrial uncoupling. Our findings identify that PCB2 intricately improves oocyte development capacity through targeted activation of the PPARγ/UCP1 pathway, fostering uncoupling lipid catabolism while concurrently mitigating oxidative stress.
Collapse
Affiliation(s)
- Yuwen Luo
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical CenterThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lv Zheng
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yizaitiguli Reyimjan
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan Ma
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shuaixiang Huang
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Hongyu Liu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Guizhen Zhou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiachen Bai
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yixiao Zhu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yidan Sun
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xinhua Zou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- State Key Laboratory of Sheep Genetic Improvement and Healthy BreedingXinjiang Academy of Agricultural and Reclamation SciencesShihezi, XinjiangChina
| |
Collapse
|
2
|
Dey P, Monferini N, Donadini L, Lodde V, Franciosi F, Luciano AM. A spotlight on factors influencing the in vitro folliculogenesis of isolated preantral follicles. J Assist Reprod Genet 2024:10.1007/s10815-024-03277-5. [PMID: 39373807 DOI: 10.1007/s10815-024-03277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Female fertility preservation via complete in vitro folliculogenesis is still chimerical. Due to many factors affecting the efficiency of isolation and culture of preantral follicles, the improvement of techniques geared to fertility preservation in higher mammals seems to be at an impasse. We need an objective view of the current stand to understand how to progress further. As such, a survey was conducted to analyze the relative distribution of studies performed in ten mammalian species on preantral follicle culture available on PubMed. Using the bovine as a reference model, we explore some factors influencing data variation that contribute to the difficulty in reproducing studies. While years of research have enabled the recapitulation of folliculogenesis from as modest as the early antral follicle stage ex vivo, in vitro preantral folliculogenesis remains elusive. Herein, we revisit the classical evidence that laid the foundations for understanding preantral folliculogenesis and review the length, breadth, and depth of information that the era of big data has currently levied. Moving forward, we recognize the urgency of synthesizing the multi-disciplinary approaches to mimic folliculogenesis in vitro to achieve a translational landscape of infertility at individual and large-scale conservation levels.
Collapse
Affiliation(s)
- Pritha Dey
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ludovica Donadini
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory (ReDBioLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
3
|
de Figueiredo JR, da Silva AFB, de Lima LF. Approaches to improve in vitro survival, growth, and maturation of caprine oocytes: main results from LAMOFOPA-Brazil. Anim Reprod 2024; 21:e20240059. [PMID: 39372258 PMCID: PMC11452086 DOI: 10.1590/1984-3143-ar2024-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
This brief review delves into the topic of in vitro follicle culture for in vitro embryo production, with a particular emphasis on goat models. Specifically, we examine the main findings from LAMOFOPA-Brazil over the last 20 years, highlighting the challenges posed by oxidative stress and epigenetic changes. Our focus is on strategies to improve follicular development and oocyte maturation. Furthermore, we underscore the valuable role of the antioxidant anethole in optimizing the efficacy of in vitro follicle culture and improving outcomes in in vitro embryo production.
Collapse
Affiliation(s)
- José Ricardo de Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Ana Flávia Bezerra da Silva
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Laritza Ferreira de Lima
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
4
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|
5
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
6
|
Paulino LRFM, Barroso PAA, Silva BR, Barroso LG, Barbalho EC, Bezerra FTG, Souza ALP, Monte APO, Silva AWB, Matos MHT, Silva JRV. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles. Domest Anim Endocrinol 2022; 81:106750. [PMID: 35870423 DOI: 10.1016/j.domaniend.2022.106750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the (1) expression of melatonin receptors types 1A/B (MTNR1A/B) in bovine ovaries and (2) the in vitro effects of melatonin on secondary follicle development, antrum formation, viability, and expression of messenger ribonucleic acid (mRNA) for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase-1 (GPX1) and peroxiredoxin 6 (PRDX6). The expression of MTNR1A/B in bovine ovarian follicles was demonstrated by immunohistochemistry. To choose the most effective concentration of melatonin on follicular growth and viability, isolated secondary follicles were cultured individually at 38.5°C, with 5% CO2 in air, for 18 d in TCM-199+ alone or supplemented with 10-11, 10-9, 10-7 or 10-5 M melatonin. Then, melatonin receptor antagonist, luzindole, was tested to further evaluate the mechanisms of actions of melatonin, that is, the follicles were cultured in control medium alone or supplemented with 10-7 M melatonin, 10 µM luzindole and both 10-7 M melatonin and 10 µM luzindole. Follicular growth, morphology and antrum formation were evaluated at days 6, 12 and 18. At the end of culture, viability of secondary follicles was analyzed by calcein-AM and ethidium homodimer-1, and the relative levels of mRNA for SOD, CAT, GPX1 and PRDX6 were evaluated by real time polymerase chain reaction. Immunohistochemistry results showed expression of MTNR1A/B in oocyte and granulosa cells of primordial, primary, secondary and antral follicles. Secondary follicles cultured in medium supplemented with melatonin at different concentrations had well preserved follicles after 18 d of culture. Furthermore, follicles cultured in presence of 10-7 M melatonin presented significantly higher diameters than those cultured in other treatments. The presence of melatonin receptor antagonist, luzindole, blocked the effects of melatonin on follicular growth and viability. In addition, follicles cultured in medium containing only melatonin had significantly higher rates of antrum formation. Follicles cultured in medium containing only melatonin had higher relative levels of mRNA for CAT, SOD and PRDX-6 than those cultured with both melatonin and luzindole. Follicles cultured with luzindole only or both melatonin and luzindole had lower relative levels of mRNA for PRDX6 and GPX1 than those cultured control medium. In conclusion, melatonin promotes growth of bovine secondary follicles through its membrane-coupled receptors, while luzindole blocks the effects of melatonin on follicle growth and reduces the expression of antioxidant enzymes in cultured follicles.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - L G Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A P O Monte
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - M H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil.
| |
Collapse
|
7
|
Babayev E, Xu M, Shea LD, Woodruff TK, Duncan FE. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth. Mol Hum Reprod 2022; 28:6693628. [PMID: 36069625 PMCID: PMC9802420 DOI: 10.1093/molehr/gaac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Indexed: 01/07/2023] Open
Abstract
Follicles are the functional unit of the ovary and several methods have been developed to grow follicles ex vivo, which recapitulate key events of oogenesis and folliculogenesis. Enzymatic digestion protocols are often used to increase the yield of follicles from the ovary. However, the impact of these protocols on the outermost theca and granulosa cells, and thereby follicle function, is not well defined. To investigate the impact of enzymatic digestion on follicle function, we collected preantral follicles from CD1 mice either by enzymatic digestion (Enzy-FL) or mechanical isolation (Mech-FL) and compared follicle growth, steroidogenesis and cell differentiation within an encapsulated in vitro follicle growth system which maintains the 3D architecture of the oocyte and its surrounding somatic cells. Follicles were encapsulated in 0.5% alginate and cultured for 8 days. Compared with Enzy-FL, Mech-FL grew more rapidly and produced significantly higher levels of androstenedione, estradiol and progesterone. The expression of theca-interstitial cell marker genes, Cyp17a1, which encodes 17-hydroxylase/17, 20-lyase and catalyzes the hydroxylation of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, and the conversion of these products into dehydroepiandrosterone and androstenedione, and Star, which encodes a transport protein essential for cholesterol entry into mitochondria, were also higher in Mech-FL than in Enzy-FL. Mech-FL maintained an intact theca-interstitial layer on the outer edge of the follicle that phenocopied in vivo patterns as confirmed by alkaline phosphatase staining, whereas theca-interstitial cells were absent from Enzy-FL from the onset of culture. Therefore, preservation of the theca cell layer at the onset of culture better supports follicle growth and function. Interestingly, granulosa cells in the outermost layers of Enzy-FL expressed CYP17A1 by Day 4 of culture while maintaining inhibin α-subunit expression and a cuboidal nucleus. Thus, in the absence of theca-interstitial cells, granulosa cells have the potential to differentiate into androgen-producing cells. This work may have implications for human follicle culture, where enzymatic isolation is required owing to the density of the ovarian cortex.
Collapse
Affiliation(s)
| | | | - Lonnie D Shea
- Member of the Oncofertility Consortium, Michigan State University, East Lansing, MI, USA,Institute of Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Teresa K Woodruff
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| | - Francesca E Duncan
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| |
Collapse
|
8
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
In vitro embryo production from early antral follicles of goats fed with a whole full-fat linseed based diet. ZYGOTE 2021; 30:194-199. [PMID: 34530946 DOI: 10.1017/s0967199421000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study aimed to use an in vitro follicle culture (IVFC) biotechnique as a tool to evaluate the influence of whole flaxseed as a feed supplementation in the diet on the in vitro development of caprine early antral follicles (EAFs) and further embryo production. In total, 18 adult goats were homogeneously allocated into two diet groups: Control and Flaxseed. EAFs from both experimental groups (300-400 µm) were isolated and cultured in vitro for 18 days. After IVFC, recovered cumulus-oocyte complexes were submitted to in vitro maturation, and subsequently to IVF and in vitro embryo culture. The endpoints evaluated were follicular growth and morphology, oocyte recovery rate and diameter, sperm penetration, pronuclei formation, embryo development, and estradiol production. The addition of the whole flaxseed in the diet did not affect (P > 0.05) follicular growth and diameter. A higher (P < 0.05) percentage of oocytes ≥ 110 µm was recovered from the flaxseed treatment. However, the sperm penetration rate was higher (P < 0.05) in the control treatment when compared with the flaxseed treatment, but no differences were found regarding the rate of fertilization nor cleaved embryos. In conclusion, dietary flaxseed increased the recovery rate of fully grown oocytes, but it did negatively affect the sperm penetration rate, even though there was no further effect on the cleavage rate.
Collapse
|
10
|
Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021; 8:vetsci8050078. [PMID: 34064445 PMCID: PMC8147802 DOI: 10.3390/vetsci8050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
The regulation of early events in mammalian embryonic development is a complex process. In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times and these events are regulated by different genes that are expressed at specific times and locations. The genes related to pluripotency and cellular differentiation, and growth factors that determine successful embryonic development are different (or differentially expressed) among mammalian species. Some genes are fundamental for controlling pluripotency in some species but less fundamental in others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular differentiation, growth factors are relevant in early development, and their effects also differ among species, for example, insulin-like growth factor improves the blastocyst development rate in some species but does not have the same effect in mice. Some growth factors influence genes related to pluripotency, and therefore, their role in early embryo development is not limited to cell growth but could also involve the earliest stages of development. In this review, we summarize the differences among mammalian species regarding the regulation of pluripotency, cellular differentiation, and growth factors in the early stages of embryonic development.
Collapse
Affiliation(s)
- Lola Llobat
- Research Group Microbiological Agents Associated with Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
11
|
Aguiar FLN, Gastal GDA, Alves KA, Alves BG, Figueiredo JR, Gastal EL. Supportive techniques to investigate in vitro culture and cryopreservation efficiencies of equine ovarian tissue: A review. Theriogenology 2020; 156:296-309. [PMID: 32891985 DOI: 10.1016/j.theriogenology.2020.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
During the reproductive lifespan of a female, only a limited quantity of oocytes are naturally ovulated; therefore, the mammalian ovary possesses a substantial population of preantral follicles available to be handled and explored in vitro. Hence, the manipulation of preantral follicles enclosed in ovarian tissue aims to recover a considerable population of oocytes of high-value animals for potential application in profitable assisted reproductive technologies (ARTs). For this purpose, the technique of preantral follicle in vitro culture (IVC) has been the most common research tool, achieving extraordinary results with offspring production in the mouse model. Although promising outcomes have been generated in livestock animals after IVC of preantral follicles, the quantity and quality of embryo production with those oocytes are still poor. In recent years, the mare has become an additional model for IVC studies due to remarkable similarities with women and livestock animals regarding in vivo and in vitro ovarian folliculogenesis. For a successful IVC system, several factors should be carefully considered to provide an optimum culture environment able to support the viability and growth of preantral follicles enclosed in ovarian tissue. The cryopreservation of the ovarian tissue is another important in vitro manipulation technique that has been used to preserve the reproductive potential in humans and, in the future, may be used in highly valuable domestic animals or endangered species. Several improvements in cryopreservation protocols are necessary to support the utilization of ovarian tissue of different species in follow-up ARTs (e.g., ovarian fragment transplantation). This review aims to provide an update on the most current advances regarding supportive in vitro techniques used in equids to evaluate and manipulate preantral follicles and ovarian tissue, as well as methodological approaches used during IVC and cryopreservation techniques.
Collapse
Affiliation(s)
- F L N Aguiar
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA; Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil; Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil.
| | - G D A Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA; National Institute of Agricultural Research, INIA La Estanzuela, Colonia, Uruguay
| | - K A Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA; Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil; Postgraduate Program of Gynecology and Obstetrics, Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - B G Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA; Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil; Animal Bioscience Postgraduate Program, Federal University of Goiás, Jataí, Goiás, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
12
|
Pimentel MML, Dos Santos FA, de Macêdo LB, de Brito PD, Lima GL, Barreto RA, Bezerra MB. Rescue of caprine fetal ovaries, vitrification and follicular development after xenotransplantation in two immunodeficient mice models. Anim Reprod 2020; 17:e20190115. [PMID: 32714451 PMCID: PMC7375861 DOI: 10.1590/1984-3143-ar2019-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Domestic and wild goats are very susceptible animals to predation, specially when pregnancy occurs. This study aimed to evaluate the use of goat fetal ovarian tissue for vitrification followed by xenotransplantation and fresh xenotransplantation in two immunosuppressed mice models (C57BL/6 SCID and Balb-C NUDE). Goat fetus ovaries were collected in slaughterhouses, divided into small cortical pieces and were destined for fresh xenotransplantation (FX) and cryopreservation followed by xenotransplantation (CX). Five recipients from each lineage were used for FX and 10 animals from each lineage for CX. The mice were euthanized after 65 postoperative days, and the transplants were collected for microscopic assessment. The blood plasma was collected for estradiol measurement. Independently of mice strain, all recipients presented complete estrus cycle in FX and 80% after CX groups. Follicles were observed at all development stages without morphological changes. The volume density and total vessel surface observed in the transplants were different (p <0.01) between groups. The estradiol levels in the recipients did not differ (p <0.05) among the treatments. Thus, it is possible to activate the preantral follicles in the ovaries of fetuses by optimizing germplasm utilization and conservation of domestic and endangered wild goats that are in predatory situations, undesirable drowning or accidental death, since provided conditions for xenotransplantation are performed.
Collapse
Affiliation(s)
- Muriel Magda Lustosa Pimentel
- Centro Universitário Cesmac, Maceió, AL, Brasil.,Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Fernanda Araujo Dos Santos
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Luã Barbalho de Macêdo
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Parmênedes Dias de Brito
- Programa de Pós-graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Gabriela Liberalino Lima
- Departamento de Ciência Animal, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Crato, CE, Brasil
| | - Raimundo Alves Barreto
- Departamento de Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | - Marcelo Barbosa Bezerra
- Departamento de Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| |
Collapse
|
13
|
de Figueiredo JR, Cadenas J, de Lima LF, Santos RR. Advances in in vitro folliculogenesis in domestic ruminants. Anim Reprod 2020; 16:52-65. [PMID: 33936289 PMCID: PMC8083813 DOI: 10.21451/1984-3143-ar2018-123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/18/2019] [Indexed: 01/27/2023] Open
Abstract
The in vitro follicle culture (IVFC) represents an outstanding tool to enhance our understanding of the control of folliculogenesis and to allow the future use of a large number of immature oocytes enclosed in preantral follicles (PFs) in assisted reproductive techniques in humans as well as in others mammalian species including the ruminants. So far, the best results of IVFC were reported from mice with the production of live offspring from primordial follicles cultured in vitro. Live birth has been obtained after the in vitro culture of bovine early antral follicles. However, in other ruminant species, these results have been limited to the production of a variable number of mature oocytes and low percentages of embryos after in vitro culture of goat, buffalo and sheep isolated secondary preantral follicles. The present review presents and discusses the main findings, limitations, and prospects of in vitro folliculogenesis in ruminants focusing on bovine, caprine, and ovine species.
Collapse
Affiliation(s)
- José Ricardo de Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza CE, Brazil
| | - Jesús Cadenas
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza CE, Brazil
| | - Laritza Ferreira de Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza CE, Brazil
| | | |
Collapse
|
14
|
Ferreira ACA, Sá NAR, Cadenas J, Correia HHV, Guerreiro DD, Alves BG, Lima LF, Celestino JJH, Rodrigues APPR, Gastal EL, Figueiredo JR. Pituitary porcine FSH, and recombinant bovine and human FSH differentially affect growth and relative abundances of mRNA transcripts of preantral and early developing antral follicles in goats. Anim Reprod Sci 2020; 219:106461. [PMID: 32828391 DOI: 10.1016/j.anireprosci.2020.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Three different sources of FSH (porcine pituitary, pFSH; recombinant bovine, rbFSH; and recombinant human, rhFSH) were compared during in vitro culture of preantral and early antral follicles of goats for 18 days. Treatments were: base medium supplemented with no FSH (control), 10, 50, or 100 mIU/mL pFSH (pFSH10, pFSH50, and pFSH100, respectively), 100 ng/mL rbFSH (rbFSH), and 50 mIU/mL rhFSH (rhFSH). There were evaluations of follicle morphology, antrum formation, growth rate, estradiol production, oocyte viability and chromatin configuration, and follicle wall relative abundance of mRNA transcript for MMP-9, TIMP-2, CYP17, CYP19A1, FSHR, Insulin-R, and BAX/BCL-2 ratio. Follicle degeneration rates were similar among all treatment groups at the end of culturing. When there were treatments with pFSH, however, there was a lesser (P < 0.05) percentage of intact follicles and estradiol production, and greater (P < 0.05) extrusion rates. Furthermore, with only pFSH10 (antral follicles) and pFSH100 (preantral and antral follicles) treatments, there was a lesser (P < 0.05) follicle growth. For preantral follicles, when there was addition of pFSH10, pFSH100, and rhFSH there was lesser (P < 0.05) oocyte meiotic resumption compared to control and rbFSH treatments. For antral follicles, when there were treatments with rhFSH and pFSH10 there was greater (P = 0.08 - P < 0.05) oocyte maturation. In conclusion, the source of FSH differentially affected gene expression, as indicated by mRNA abundances, and follicular dynamics of preantral and antral follicles in vitro. Addition of FSH during the in vitro culture improved the developmental outcomes only for antral follicles.
Collapse
Affiliation(s)
- Anna Clara A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Hudson H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Denise D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, GO, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Juliana J H Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape, CE, Brazil
| | - Ana Paula P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Jose R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
15
|
Culture of goat preantral follicles in situ associated with mesenchymal stem cell from bone marrow. ZYGOTE 2019; 28:65-71. [DOI: 10.1017/s0967199419000686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SummaryThis study aims to develop an in vitro co-culture system of in situ goat preantral follicles with bone marrow-derived mesenchymal stem cells (BM-MSC), evaluating the influence of these cells on follicular growth, rate of activation and morphologically normal follicles. Fragments of ovarian cortex were cultured for 1 or 7 days in the presence of BM-MSC (BM-MSC+) and absence of BM-MSC (BM-MSC−). Histological sections of the fragments were analysed and data were obtained regarding morphological classification, survival rate of morphologically normal follicles and rate of follicular activation. Culture medium on days 1 and 7 was also sampled for nitrite concentration and reduced glutathione activity. There was a reduction (P < 0.05) in the percentage of morphologically normal follicles in the BM-MSC+ compared with the fresh control only on the seventh day of culture. When comparing treatments, on the seventh day of culture, a higher rate of morphologically normal preantral follicles was observed in BM-MSC+ (P < 0.05). In both treatments, primordial and developing follicle rates were similar to the fresh control (P > 0.05). When comparing treatments with each other, as well as with the fresh control, no differences were observed in follicular diameter (P > 0.05) or nitrite concentration (P > 0.05). The concentration of reduced glutathione was lower on the seventh day of co-culture in both treatments (P < 0.05). In conclusion, co-culture had no influence on follicular or oocyte development. However, it was critical to maintain the survival of preantral follicles during 7 days of culture.
Collapse
|
16
|
Castañeda OJR, de Aguiar FLN, de Sá NAR, Morais MLGDS, Cibin FWS, Torres CAA, de Figueiredo JR. Powdered coconut water (ACP 406®) as an alternative base culture medium for in vitro culture of goat preantral follicles enclosed in ovarian tissue. Anim Reprod 2019; 16:838-845. [PMID: 32368261 PMCID: PMC7189440 DOI: 10.21451/1984-3143-ar2019-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluated a powdered coconut water solution (ACP 406®) as a base culture medium on the in vitro survival and development of in situ goat preantral follicles. The ovarian fragments were either immediately fixed in Carnoy solution (non-cultured control) or individually cultured for 2 or 6 days. The following culture media (all containing 100 μg/mL penicillin and 100 μg/mL streptomycin) were evaluated: α-MEM (α-MEM alone, without additional supplementation); α-MEM+ (supplemented α-MEM); ACP (ACP®406 alone); or ACP+ (supplemented ACP®406). Additional supplementation includes: 1.25 mg/mL bovine serum albumin, 10 μg/mL insulin, 5.5 μg/mL transferrin, 5 ng/mL selenium, 2 mM glutamine, and 2 mM hypoxanthine. The endpoints (i) follicular morphology; (ii) development; (iii) estradiol production; and (iv) reactive oxygen species (ROS) were recorded. Data were analyzed using chi-square, Turkey, t-test or One-Way ANOVA. Differences were considered significant when P < 0.05. At day 2 of culture, a greater (P < 0.05) percentage of morphologically normal follicles was observed between ACP+ and ACP treatments. Moreover, at day 2 of culture, no hormonal difference (P < 0.05) was observed between ACP+ and both α-MEM treatments. At day 6 of culture when ACP and α-MEM treatments were compared the percentage of healthy follicles were similar (P > 0.05) among treatments. Overall, all treatments had lower primordial follicles (P < 0.05) accompany by greater developing follicles (P < 0.05) percentages than non-cultured control treatment, indicating primordial follicle activation. However, at day 6 of culture, the percentage of primordial follicle development were similar (P > 0.05) among the treatments. Likewise, no differences (P > 0.05) were observed for ROS production and follicular and oocyte diameters among treatments. Therefore, ACP+ has the equivalent efficiency to MEM+ in maintaining the survival and development of goat preantral follicles, representing an alternative plant-based low-cost culture medium for in vitro culture.
Collapse
Affiliation(s)
- Olga Juliana Roldan Castañeda
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil.,Universidade Federal de Viçosa, Laboratório de Fisiologia Animal e Reprodução, Viçosa, MG, Brasil
| | - Francisco Léo Nascimento de Aguiar
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil
| | - Naiza Arcângela Ribeiro de Sá
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil
| | | | | | | | - José Ricardo de Figueiredo
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil
| |
Collapse
|
17
|
Bezerra FTG, Lima FEO, Paulino LRFM, Silva BR, Silva AWB, Souza ALP, van den Hurk R, Silva JRV. In vitro culture of secondary follicles and prematuration of cumulus-oocyte complexes from antral follicles increase the levels of maturation-related transcripts in bovine oocytes. Mol Reprod Dev 2019; 86:1874-1886. [PMID: 31621988 DOI: 10.1002/mrd.23284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022]
Abstract
This study evaluates the levels of messenger RNA (mRNA) for eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1 in oocytes from secondary and antral follicles at different stages of development. The effects of in vitro culture, in vitro prematuration, and in vitro maturation on the expression of these genes on oocytes were also analyzed. The results showed that mRNA levels for H1FOO, GDF9, and PARN were higher in oocytes from small, medium, and large antral follicles, respectively, than those seen in secondary follicles. Oocytes from small, medium, and large antral follicles had higher levels of CCNB1 than oocytes from secondary follicles. Oocytes from cultured secondary follicles had higher levels of GDF9, CMOS, PARN, eIF4E, CCNB1, and H1FOO than before culture. Prematured oocytes from small antral follicles had higher levels of mRNA for GDF9, PARN, and eIF4E than before culture. In addition, higher levels of cMOS and H1FOO were identified in prematured oocytes from medium antral follicles. In conclusion, follicular growth is associated with an increase in the expression of H1FOO, GDF9, CCNB1, and PARN. The culture of secondary follicles, prematuration, and maturation of oocytes from antral follicles increase the expression of eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1.
Collapse
Affiliation(s)
- Francisco Taiã G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Francisco Edilcarlos O Lima
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Laís Rayani F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Ana Liza P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Robert van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - José Roberto V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| |
Collapse
|
18
|
Abstract
Eggs are female germ cells that are required for producing offspring through sexual reproduction. In mammals, eggs are produced in the ovary and ovulated into the oviduct. It is well known that over 99% of eggs are degenerated without ovulation, so that many studies have attempted in vitro folliculogenesis to produce many eggs in different species for a few decades. Although many methods have been developed, a success of in vitro egg production with the resultant live birth of offspring has been limited, especially in livestock animals. More recently, we have succeeded in producing live pups derived from in vitro/ex vivo egg production in mice. This review aims to introduce our recent findings with a brief history of in vitro/ex vivo culture systems for follicles and ovaries.
Collapse
Affiliation(s)
- Kanako Morohaku
- School of Science and Technology, Institute of Agriculture, Division of Animal Science, Shinshu University, Nagano 399-4598, Japan.,Institute for Biomedical Sciences, Shinshu University, Nagano 399-4598, Japan
| |
Collapse
|
19
|
Zhang X, Jiang L, Tian Y, Xia Y, Yan L, Wu C, Zhang T, Zhu J. Establishment of in-vitro three dimensional rat follicle culture system and validation of the applicability as an in vitro female reproductive toxicity testing system. Toxicol In Vitro 2019; 58:161-169. [PMID: 30902691 DOI: 10.1016/j.tiv.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Jiang
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Yi Xia
- Changning District Center for Disease Control and Prevention, Shanghai 200335, China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Changzhi Wu
- Jiangxi maternal and child health care hospital, Jiangxi 330006, China
| | - Tianbao Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China.
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
20
|
Panta AMT, Silva AFBD, Padilha RT, Correia HHV, Rondina D, Figueiredo JR, Magalhães Padilha DDM. Evaluation of in vitro culture systems for goat preantral follicles using reused ovaries from reproductive biotechniques: An alternative to maximize the potential of reproduction. Reprod Domest Anim 2018; 54:480-485. [PMID: 30444528 DOI: 10.1111/rda.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
This study aimed to examine the in vitro culture of secondary preantral follicles, using reused ovaries, to compare both the 2D and 3D methods of in vitro culture of preantral follicles, and the system of medium replacement. Twenty-five pairs of ovaries from mixed-breed goats were used for the experiment. Follicular puncture of antral follicles was performed for in vitro production. After this procedure, the secondary preantral follicles were submitted to a microdissection procedure. The isolated preantral follicles were randomly divided into three treatments: (a) Two-dimensional culture with partial replacement of medium during culture (2D PR), (b) Three-dimensional culture with addition of medium during culture (3D AD) and (c) Three-dimensional culture with partial replacement of medium (3D PR). The culture period was 18 days. All treatments at the end of the in vitro culture period (18 days) presented a follicular survival rate which ranged from 59% to 70%, demonstrating that it was possible to perform an experiment with preantral follicles using ovaries that had previously been used in another reproductive biotechnique. The 3D AD treatment showed a survival percentage and follicular diameter higher than the 2D PR treatment, however, it did not differ from the 3D PR treatment. In conclusion, experiments employing the use of preantral follicles can be performed with success after the ovaries have been used for experiments with antral follicles. Moreover, the three-dimensional system with the addition of medium is recommended for in vitro culture of preantral follicles, since this system is more practical and financially feasible.
Collapse
Affiliation(s)
| | | | | | - Hudson Henrique Vieira Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculdade de Veterinaria, State University of Ceará, Fortaleza, Brazil
| | - Davide Rondina
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculdade de Veterinaria, State University of Ceará, Fortaleza, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculdade de Veterinaria, State University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
21
|
Supplementation of in vitro culture medium with FSH to grow follicles and mature oocytes can be replaced by extracts of Justicia insularis. PLoS One 2018; 13:e0208760. [PMID: 30532263 PMCID: PMC6286020 DOI: 10.1371/journal.pone.0208760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/20/2018] [Indexed: 12/04/2022] Open
Abstract
The present study evaluated the effect of supplementing in vitro culture medium with J. insularis compared to FSH on isolated secondary follicles and in vitro maturation of oocytes from those follicles. Secondary follicles were isolated from sheep ovaries and individually cultured for 18 days in α-MEM+ (Control), α-MEM+ supplemented with 100 ng/mL recombinant bovine follicle stimulating hormone (FSH) or with 0.3, 1.25, or 2.5 mg/mL of J. insularis extract (JI0.3, JI1.25, and JI2.5, respectively). Culture medium collected every 2 days was used to measure ROS levels. At the end of the culture period, cumulus oocytes complex (COCs) were collected and matured in vitro. Follicular walls were used for mRNA quantitation. JI0.3 led to a higher (P < 0.05) percentages of intact follicles than other groups after 18 days of culture. While follicular diameter remained unchanged from Day 6 onwards with JI0.3 and FSH, percentages of antral cavity formation were higher (P < 0.05) with JI0.3 at Day 6 than in all other treatments. No differences were observed between controls and treatment groups regarding ROS levels and mRNA expression of genes. Viability of resulting oocytes was higher (P < 0.05) in JI0.3 compared to FSH. Interestingly, in control experiment, supplementation of maturation medium with JI0.3 led to higher (P < 0.05) percentages of metaphase II compared to controls. Although more validations will be needed, it seems that this natural extract could be used as a cheap and easily available alternative to commercial FSH.
Collapse
|
22
|
Influence of follicle-stimulating hormone concentrations on the integrity and development of bovine follicles cultured in vitro. ZYGOTE 2018; 26:417-423. [DOI: 10.1017/s0967199418000497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThis study investigated the in vitro culture of bovine follicles included in ovarian tissue for 2 or 6 days (D2 or D6), with the addition of different concentrations of follicle-stimulating hormone (FSH) (0, 10, 50, 100 or 200 ng/ml). Data were compared for follicular development, morphological integrity and diameter of follicles and oocytes. Ovaries (n = 10) from Nelore cows (n = 5) were divided into fragments (n = 11 per ovary) and were immediately fixed in Bouin’s solution (D0) or were individually cultured for 2 or 6 days in one of the described concentrations of FSH and then processed for histology. Compared with the rates of follicular development at D2 for minimal essential medium (MEM) (75.0%) and 50 ng/ml of FSH (71.1%), the best rates of follicular development at D2 were obtained with 10 (84.7%), 100 (87.5%) and 200 ng/ml of FSH (85.0%; P<0.05). After 6 days of cultivation, there were no differences among treatments regarding follicular growth. The morphological integrity of preantral follicles was better maintained by 100 ng/ml FSH for 2 and 6 days of cultivation (51.2 and 40.4%, respectively; P<0.05) than that for MEM (D2: 30.9%, D6: 20.8%), 10 (D2: 39.2%, D6: 22.8%), 50 (D2: 30.4%, D6: 28.8%) and 200 ng/ml FSH (D2: 45.2%, D6: 36.8%). FSH at 100 ng/ml provided the highest mean diameter averages: 34.5±10.8 µm at D2 and 33.2±12.5 µm at D6 (P<0.05). We concluded that the medium supplemented with 100 ng/ml FSH during in vitro culture provided appropriate conditions for the development and morphological integrity of preantral follicles in cattle.
Collapse
|
23
|
Max MC, Bizarro-Silva C, Búfalo I, González SM, Lindquist AG, Gomes RG, Barreiros TRR, Lisboa LA, Morotti F, Seneda MM. In vitro culture supplementation of EGF for improving the survival of equine preantral follicles. In Vitro Cell Dev Biol Anim 2018; 54:687-691. [PMID: 30284096 DOI: 10.1007/s11626-018-0296-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
Abstract
Folliculogenesis is a process of development and maturation of the ovarian follicles, being essential for the maintenance of fertility. In in vivo conditions, 99.9% of the follicles of an ovary do not ovulate and undergo atresia. In order to minimize this loss and to clarify the existing mechanisms, a technique was developed that allows for the in vitro follicular development. The objective of this study was to evaluate the effects of different epidermal growth factor (EGF) concentrations on the in vitro culturing of equine preantral follicles. Ovaries (n = 10) were collected from a local slaughterhouse of mares in seasonal anestrus, washed with 70% alcohol and PBS, and transported. The inner portion of the ovary was divided into 11 fragments of approximately 3 × 3 × 1 mm. A fragment of each ovary was immediately fixed in Bouin (control group). The remaining 10 fragments were individually cultured for 2 and 6 d. The medium was supplemented with different concentrations of EGF (0, 10, 50, 100, and 200 ng/mL). After cultivation, the fragments were processed and classified according to the developmental stage and morphology. In total, 1065 slides containing 6105 tissue sections were evaluated. Within 2 d of culture, there was a higher proportion of intact follicles at the EGF concentrations of 0 and 100 ng/mL (p > 0.05). After 6 d of culture, only the EGF concentration of 100 ng/mL demonstrated a difference when compared to the other treatments (0, 10, 50 and 200 ng/mL of EGF, p > 0.05). There was follicular development after 2 d at all EGF concentrations. Thus, we suggest that EGF promotes follicular survival in equines at a concentration of 100 ng/mL in in vitro cultures of ovarian fragments for 2 d. In addition, we suggest that EGF promotes follicular survival in equines at a concentration of 100 ng/mL in situ cultivation.
Collapse
Affiliation(s)
- Marilu Constantino Max
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Camila Bizarro-Silva
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil. .,Laboratory Animal Reproduction, DCV, CCA, UEL, Londrina, PR, 86051-990, Cx. Postal: 10.011, Brazil.
| | - Isabela Búfalo
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Suellen Miguez González
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Andressa Guidugli Lindquist
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Roberta Garbelini Gomes
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Thales Ricardo Rigo Barreiros
- Department of Veterinary and Animal Production, Laboratory of Biotechnology of Animal Reproduction, State University of Northern Parana, Jacarezinho, Parana, Brazil
| | - Lívia Aires Lisboa
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Fábio Morotti
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| | - Marcelo Marcondes Seneda
- Department of Veterinary Clinical, Laboratory of Animal Reproduction, University of Londrina, Londrina, Parana, Brazil
| |
Collapse
|
24
|
Leal ÉSS, Vieira LA, Sá NAR, Silva GM, Lunardi FO, Ferreira ACA, Campello CC, Alves BG, Cibin FWS, Smitz J, Figueiredo JR, Rodrigues APR. In vitro growth and development of isolated secondary follicles from vitrified caprine ovarian cortex. Reprod Fertil Dev 2018; 30:359-370. [PMID: 28768567 DOI: 10.1071/rd16487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/17/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate the viability, antrum formation and in vitro development of isolated secondary follicles from vitrified caprine ovarian cortex in a medium previously established for fresh isolated secondary follicles, in the absence (α-minimum essential medium (α-MEM+) alone) or presence of FSH and vascular endothelial growth factor (VEGF; α-MEM++FSH+VEGF). Ovarian fragments were distributed among five treatments (T1 to T5): fresh follicles were fixed immediately (T1), follicles from fresh tissue were cultured in vitro in α-MEM+ (T2) or α-MEM++FSH+VEGF (T3) and follicles from vitrified tissue were cultured in vitro in α-MEM+ (T4) or α-MEM++FSH+VEGF (T5). After 6 days of culture, treated follicles (T2, T3, T4 and T5) were evaluated for morphology, viability and follicular development (growth, antrum formation and proliferation of granulosa cells by Ki67 and argyrophilic nucleolar organiser region (AgNOR) staining). The levels of reactive oxygen species (ROS) in the culture media were also assessed. Overall, morphology of vitrified follicles was altered (P<0.05) compared with the fresh follicles. Follicular viability, antrum formation and ROS were similar between treatments (P>0.05). The average overall and daily follicular growth was highest (P<0.05) in T3. Granulosa cells in all treatments (T1, T2, T3, T4 and T5) stained positive for Ki67. However, fresh follicles from T3 had significantly higher AgNOR staining (P<0.05) compared with follicles of T1, T2, T4 and T5. In conclusion, secondary follicles can be isolated from vitrified and warmed ovarian cortex and survive and form an antrum when growing in an in vitro culture for 6 days.
Collapse
Affiliation(s)
- Érica S S Leal
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Luis A Vieira
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Naíza A R Sá
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Gerlane M Silva
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Franciele O Lunardi
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Anna C A Ferreira
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Cláudio C Campello
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Benner G Alves
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Francielli W S Cibin
- University Federal of Pampa, Uruguaiana-Rio Grande do Sul, Av. General Osório, 900 - São Jorge Bagé, RS - CE - 96400-100, Brazil
| | - Johan Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - José R Figueiredo
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| | - Ana P R Rodrigues
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceará, Av. Dr Silas Munguba, 1700 - Campus of Itaperi, Fortaleza - CE - CEP 60741-903, Brazil
| |
Collapse
|
25
|
Ferreira ACA, Cadenas J, Sá NAR, Correia HHV, Guerreiro DD, Lobo CH, Alves BG, Maside C, Gastal EL, Rodrigues APR, Figueiredo JR. In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect. Anim Reprod Sci 2018; 196:120-129. [PMID: 30049427 DOI: 10.1016/j.anireprosci.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023]
Abstract
The present study aimed to investigate a concentration-response curve of human recombinant FSH (hrFSH) for in vitro culture of isolated preantral and early antral follicles of goats. Isolated follicles were cultured for 18 days using the following treatments: basic culture medium (control); or control medium supplemented with 10, 50, and 100 mIU/mL of hrFSH. At the end of the culture, cumulus-oocyte complexes were recovered and subjected to in vitro maturation. The following endpoints were evaluated: follicle morphology, growth rate and antrum formation, oocyte viability and meiotic stage, and estradiol production, as well as relative expression of FSH receptor (FSHR), and steroidogenic enzyme (3β-HSD, CYP17, and CYP19A1) genes. In antral follicles, the FSH addition at 50 mIU/mL increased follicular diameter and growth rate, percentage of fully developed oocytes, and oocyte diameter (P < 0.05), and tended to increase the percentage of MII oocytes when compared to the control (P = 0.07). With preantral follicles, FSH addition at 100 mIU/mL increased relative abundance of mRNA for CYP19A1 when compared to the control (P < 0.05). At the same FSH concentrations of 100 and 50 mIU/mL, there was a greater relatively abundance of mRNA for 3β-HSD and CYP17 in preantral than in antral follicles (P < 0.05). For preantral and antral follicle comparisons when the same treatments were imposed, there were greater concentrations of estradiol for antral follicles (P < 0.05). In conclusion, hrFSH enhanced in a concentration-dependent manner the in vitro development of caprine antral follicles; however, there was no positive effect in the culture of preantral follicles.
Collapse
Affiliation(s)
- Anna Clara A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Jesús Cadenas
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Hudson H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Denise D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Carlos H Lobo
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Carolina Maside
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
26
|
Rocha RMP, Lima LF, Brito IR, Silva GM, Correia HHV, Ribeiro de Sá NA, Ferreira ACA, Sales AD, Lobo CH, Campello CC, Smitz J, Wheeler MB, Figueiredo JR. Anti-Müllerian hormone reduces growth rate without altering follicular survival in isolated caprine preantral follicles cultured in vitro. Reprod Fertil Dev 2018; 29:1144-1154. [PMID: 27166082 DOI: 10.1071/rd15290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/13/2016] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to evaluate the effect of anti-Müllerian hormone (AMH), with and without FSH, on the in vitro development of isolated caprine preantral follicles, as well as follicular steroid production and mRNA levels of AMH, hormone receptors (AMH and FSH), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1), CYP17 (cytochrome P450, family 17, subfamily A, polypeptide 1), HSD3B (3-beta-hydroxysteroid dehydrogenase) and Myc (myelocytomatosis oncogene). Isolated secondary follicles were cultured in minimum essential medium alpha (α-MEM+) alone or supplemented with 50ng mL-1 AMH and/or 100ng mL-1 FSH added sequentially on different days of culture. Follicles were cultured for a total of 18 days, with different media during the first (Days 0-9) and second (Days 10-18) halves of the culture period, resulting in six treatment groups, as follows: α-MEM+/α-MEM+, FSH/FSH, AMH/AMH, AMH+FSH/AMH+FSH, AMH/FSH, and FSH/AMH. Follicle development was evaluated on the basis of follicular growth, oocyte maturation and steroid secretion. There was a decrease in follicular growth rate in the AMH, AMH+FSH and AMH/FSH treatment groups compared with α-MEM+ and FSH treatment groups (P<0.05). However, the different culture conditions had no effect on rates of meiotic resumption and steroid secretion (P>0.05). Moreover, follicles cultured in the presence of FSH had lower levels of AMH receptor type II (AMHRII) mRNA compared with non-cultured control (freshly isolated follicles), and the AMH and AMH/FSH treatment groups. In conclusion, AMH reduces the follicular growth rate of isolated goat preantral follicles in vitro without affecting follicular survival.
Collapse
Affiliation(s)
- R M P Rocha
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - L F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - I R Brito
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - G M Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - H H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - N A Ribeiro de Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - A D Sales
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - C H Lobo
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - J Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - M B Wheeler
- Department of Animal Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| |
Collapse
|
27
|
The Mechanism of Melatonin and Its Receptor MT2 Involved in the Development of Bovine Granulosa Cells. Int J Mol Sci 2018; 19:ijms19072028. [PMID: 30002300 PMCID: PMC6073438 DOI: 10.3390/ijms19072028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 01/20/2023] Open
Abstract
Ovarian granulosa cells (GCs) are a critical approach to investigate the mechanism of gene regulation during folliculogenesis. The objective of this study was to investigate the role of MT2 in bovine GCs, and assess whether MT2 silencing affected GCs response to melatonin. We found that MT2 silencing significantly decreased the secretion of progesterone and estradiol, and increased the concentration of inhibin B and activin B. To further reveal the regulatory mechanism of MT2 silencing on steroids synthesis, it was found that the expression of CYP19A1 and CYP11A1 enzymes (steroid hormone synthesis) were down-regulated, while genes related to hormonal synthesis (StAR, RUNX2, INHA and INHBB) were up-regulated without affecting the expression of INHBA, suggesting that MT2 silencing may regulate hormone abundance. Furthermore, MT2 silencing significantly increased the expression of TGFBR3 and BMP6, and decreased the expression of LHR and DNMT1A without significant difference in the expression of FSHR and EGFR. In addition, MT2 silencing didn’t affect the effect of melatonin on increasing the expression of DNMT1A, EGFR, INHBA and LHR, and progesterone level, or decreasing INHA, TGFBR3 and StAR expression, and production of inhibin B. Moreover, MT2 silencing could disrupt the role of melatonin in decreasing the FSHR, INHBB and BMP6 expression, and activin B secretion. In conclusion, these results reveal that melatonin and MT2 are essential regulator of bovine GCs function by modulating reproduction-related genes expression, hormones secretion and other regulators of folliculogenesis.
Collapse
|
28
|
Rajabi Z, Khokhar Z, Yazdekhasti H. The Growth of Preantral Follicles and the Impact of Different Supplementations and Circumstances: A Review Study with Focus on Bovine and Human Preantral Follicles. Cell Reprogram 2018; 20:164-177. [PMID: 29782184 DOI: 10.1089/cell.2017.0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
One of the most important concerns cancer survivors face is fertility. Current treatment modalities often result in damage to the reproductive system. Different options have been proposed to preserve the fertility of affected women, and many attempts have been made to improve their chance of childbearing after therapy. Cryopreservation of ovarian tissue and follicles before the onset of cancer treatment and then either transplantation of ovarian tissue or culture of ovarian tissue and individual follicles in vitro is a commonly cited approach. Extensive research is being done to design an optimal condition for the culture of ovarian follicles. Improving follicle culture systems by understanding their actual growth needs might be a crucial step toward fertility preservation in cancer patients. This review article will try to provide a summary of the role of different factors and conditions on growth of human and bovine preantral follicles in vitro.
Collapse
Affiliation(s)
- Zahra Rajabi
- 1 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran .,2 Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Zunair Khokhar
- 3 Department of Cell Biology, University of Virginia , Charlottesville, Virginia
| | - Hossein Yazdekhasti
- 4 Center for Research in Contraception and Reproductive Health, University of Virginia , Charlottesville, Virginia.,5 Center for Membrane & Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
29
|
Lima GL, Luz VB, Lima LF, Rocha RMP, Castro SV, Castelo TS, Rodrigues APR, Figueiredo JR, Silva AR. Interactions between different media and follicle-stimulating hormone supplementation on in vitro culture of preantral follicles enclosed in ovarian tissue derived from collared peccaries (Pecari tajacuLinneaus, 1758). Reprod Domest Anim 2018; 53:880-888. [DOI: 10.1111/rda.13179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/19/2018] [Indexed: 11/28/2022]
Affiliation(s)
- GL Lima
- Laboratory of Animal Germplasm Conservation; UFERSA; Mossoró RN Brazil
| | - VB Luz
- Centro Universitário CESMAC; Maceió AL Brazil
| | - LF Lima
- Laboratory of Ovarian Preantral Follicles Manipulation; UECE; Fortaleza CE Brazil
| | - RMP Rocha
- Laboratory of Ovarian Preantral Follicles Manipulation; UECE; Fortaleza CE Brazil
| | - SV Castro
- Laboratory of Ovarian Preantral Follicles Manipulation; UECE; Fortaleza CE Brazil
| | - TS Castelo
- Laboratory of Animal Germplasm Conservation; UFERSA; Mossoró RN Brazil
| | - APR Rodrigues
- Laboratory of Ovarian Preantral Follicles Manipulation; UECE; Fortaleza CE Brazil
| | - JR Figueiredo
- Laboratory of Ovarian Preantral Follicles Manipulation; UECE; Fortaleza CE Brazil
| | - AR Silva
- Laboratory of Animal Germplasm Conservation; UFERSA; Mossoró RN Brazil
| |
Collapse
|
30
|
Donfack NJ, Alves KA, Alves BG, Rocha RMP, Bruno JB, Lima LF, Lobo CH, Santos RR, Domingues SFS, Bertolini M, Smitz J, Rodrigues APR. In vivo and in vitro strategies to support caprine preantral follicle development after ovarian tissue vitrification. Reprod Fertil Dev 2018; 30:1055-1065. [DOI: 10.1071/rd17315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare fresh and vitrified goat ovarian tissue after autotransplantation and in vitro culture. Adult goats were completely ovariectomised and each ovarian pair was sliced and distributed among six different treatment groups: fresh control, fresh transplant, fresh culture, vitrified control, vitrified transplant and vitrified culture. Follicular morphology, development, growth, density, revascularisation and hormone production were evaluated in all groups. Three antral follicles (two in the fresh transplant and one in the vitrified transplant groups) were observed on the surface of the graft 90 days after transplantation. The percentage of morphologically normal follicles was similar in the fresh control, fresh transplant and vitrified transplant groups. The percentage of developing (transition, primary and secondary) follicles was higher after in vitro culture of fresh or vitrified tissue. Transplantation resulted in a lower follicle density. Serum oestradiol concentrations remained constant during the entire transplantation period. In contrast, progesterone production decreased significantly. Expression of CD31 mRNA was lower in fresh culture. In conclusion, restoration of goat ovarian function can be successfully achieved following transplantation of both fresh and vitrified goat ovarian tissue. However, transplantation induced higher follicle loss than in vitro culture.
Collapse
|
31
|
Cavalcante A, Lins T, Santos J, Barros V, Monte A, Barberino RS, Almeida J, Matos M. Supplemented Morus nigra extract-based medium associated with FSH enables the survival and growth of isolated ovine secondary ovarian follicles. Reprod Domest Anim 2017; 53:423-432. [PMID: 29265671 DOI: 10.1111/rda.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/06/2017] [Indexed: 01/15/2023]
Abstract
The effects of Morus nigra ethanolic extract, without or with addition of supplements associated or not with FSH, on in vitro culture of ovine secondary follicles were evaluated. In experiment 1, isolated secondary follicles were cultured for 12 days in α-MEM alone (control) or in different concentrations of M. nigra extract (MN 0.025; 0.05 or 0.1 mg/ml). In experiment 2, culture media were α-MEM supplemented with BSA, insulin, transferrin, selenium, glutamine, hypoxanthine and ascorbic acid (α-MEM+ ) or this medium associated with FSH (α-MEM+ + FSH), or 0.1 mg/ml M. nigra without supplements (MN 0.1) or supplemented (MN 0.1+ ) without or with FSH (MN 0.1+ + FSH). In experiment 1, 0.1 mg/ml M. nigra showed the highest percentages (p < .05) of normal follicles and fully grown oocytes, besides a higher follicular diameter than α-MEM and other M. nigra extract concentrations. Moreover, MN 0.1 showed lower (p < .05) glutathione (GSH) levels and similar (p > .05) mitochondrial activity compared to α-MEM. In experiment 2, MN 0.1+ + FSH showed similar results (p > .05) to α-MEM+ + FSH for all parameters evaluated, except for the daily growth rate, which was higher (p < .05) in MN 0.1+ + FSH. The GSH levels were higher in MEM+ than all treatments. In addition, oocytes from follicles cultured in MN 0.1+ + FSH showed ability to resume meiosis. In conclusion, M. nigra extract (0.1 mg/ml) added by supplements and FSH can be an efficient medium for ovine secondary follicle development.
Collapse
Affiliation(s)
- Ayp Cavalcante
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Tlbg Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Jms Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Vrp Barros
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Apo Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - R S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Jrgs Almeida
- Center for Studies and Research on Medicinal Plants, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Mht Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| |
Collapse
|
32
|
Aguiar F, Lunardi F, Lima L, Bruno J, Alves B, Magalhães-Padilha D, Cibin F, Berioni L, Apgar G, Lo Turco E, Gastal E, Figueiredo J. Role of EGF on in situ culture of equine preantral follicles and metabolomics profile. Res Vet Sci 2017; 115:155-164. [DOI: 10.1016/j.rvsc.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
33
|
Correia H, Vieira L, Maside C, Paes V, Silva R, Alves B, Santos F, Apgar G, Rodrigues A, Figueiredo J. Ovarian transport temperature (4 vs 33 °C) impacts differently the in vitro development of isolated goat preantral and antral follicles. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Hosseini L, Shirazi A, Naderi MM, Shams-Esfandabadi N, Borjian Boroujeni S, Sarvari A, Sadeghnia S, Behzadi B, Akhondi MM. Platelet-rich plasma promotes the development of isolated human primordial and primary follicles to the preantral stage. Reprod Biomed Online 2017; 35:343-350. [DOI: 10.1016/j.rbmo.2017.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022]
|
35
|
In vitro growth and maturation of isolated caprine preantral follicles: Influence of insulin and FSH concentration, culture dish, coculture, and oocyte size on meiotic resumption. Theriogenology 2017; 90:32-41. [DOI: 10.1016/j.theriogenology.2016.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/23/2022]
|
36
|
Brito IR, Silva GM, Sales AD, Lobo CH, Rodrigues GQ, Sousa RF, Moura A, Calderón C, Bertolini M, Campello CC, Smitz J, Figueiredo JR. Fibrin-alginate hydrogel supports steroidogenesis, in vitro maturation of oocytes and parthenotes production from caprine preantral follicles cultured in group. Reprod Domest Anim 2016; 51:997-1009. [PMID: 27650787 DOI: 10.1111/rda.12779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022]
Abstract
This study aimed to establish a culture system that improves the in vitro development of caprine preantral follicles. In a first experiment, follicles were encapsulated as a single unit per bead and cultured singly or in groups or with five follicles in the same alginate (ALG) bead for 18 days. In a subsequent experiment, the "five follicles per bead" design was chosen to culture in ALG, fibrin-alginate (FA) or hyaluronate (HA) for 18 days. In a third experiment, we chose the five follicles per bead in FA to culture for 30 days. The culture set-up of five follicles per ALG bead increased antrum formation and follicle diameter compared to the other culture designs (p < .05). Moreover, under this condition, 44.44% of the oocytes from in vitro cultured preantral follicles reached meiotic resumption. A significant increase of follicle diameter occurred in attachment system and FA (p < .05), but the ALG condition reached the highest among all groups on day 18 (p < .05). Follicles encapsulated in matrix produced more estradiol and progesterone than attachment system (p < .05). The expression of MMP-9 mRNA was higher in FA than in other groups (p < .05) and similar to antral follicles from in vivo control (p > .05). Only FA group resulted in oocytes matured. After 30 days, oocytes from preantral follicles in vitro grown in FA developed to eight-cell parthenotes. In conclusion, a culture system using FA supported the development of caprine preantral follicles cultured in group and included in the same bead of hydrogel, improving the oocyte maturation and producing parthenotes.
Collapse
Affiliation(s)
- I R Brito
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - G M Silva
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - A D Sales
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - C H Lobo
- Department of Animal Science, Laboratory of Animal Physiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - G Q Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - R F Sousa
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Aaa Moura
- Department of Animal Science, Laboratory of Animal Physiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cem Calderón
- Biotechnology Laboratory, University of Fortaleza, Fortaleza, CE, Brazil
| | - M Bertolini
- Biotechnology Laboratory, University of Fortaleza, Fortaleza, CE, Brazil
| | - C C Campello
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - J Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - J R Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
37
|
Gouveia B, Macedo T, Santos J, Barberino R, Menezes V, Müller M, Almeida J, Figueiredo J, Matos M. Supplemented base medium containing Amburana cearensis associated with FSH improves in vitro development of isolated goat preantral follicles. Theriogenology 2016; 86:1275-84. [DOI: 10.1016/j.theriogenology.2016.04.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
|
38
|
Developmental competence and cryotolerance of caprine parthenogenetic embryos cultured in chemically defined media. Theriogenology 2016; 86:596-603. [DOI: 10.1016/j.theriogenology.2016.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 01/13/2023]
|
39
|
|
40
|
Impact of insulin concentration and mode of FSH addition on the in vitro survival and development of isolated bovine preantral follicles. Theriogenology 2016; 86:1137-1145. [PMID: 27207475 DOI: 10.1016/j.theriogenology.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022]
Abstract
UNLABELLED The insulin and FSH are two important substances in the folliculogenesis process. Thus, the hypothesis of this experiment is that insulin concentration and the form of FSH addition affect the in vitro survival, growth, and estradiol production after culture of isolated bovine preantral follicles. The effects of insulin concentration (experiment 1) and the influence of both fixed and sequential concentrations of FSH (experiment 2) on the in vitro survival and development of bovine preantral follicles were investigated in this study by IVC for 18 days. In experiment 1, on Day 18 of culture, the addition of insulin at all concentrations promoted follicular survival rates significantly higher than that of the control, with the 10-ng/mL insulin treatment showing values significantly higher than the other treatments. The addition of 5- and 10-ng/mL insulin promoted higher follicular growth than the control and other treatments. In experiment 2, FSH 100 had a higher percentage of follicular viability compared with the control. FSH 100 produced follicle diameters significantly higher than those of the control and FSH seq. TREATMENT Estradiol levels in the presence of FSH (fixed concentration) were significantly higher than the other treatments. In conclusion, the association of insulin (10 ng/mL) and fixed concentration FSH (100 ng/mL) provides high rates of survival, growth, and estradiol production in bovine preantral follicles.
Collapse
|
41
|
Lunardi FO, de Aguiar FLN, Duarte ABG, Araújo VR, de Lima LF, Ribeiro de Sá NA, Vieira Correia HH, Domingues SFS, Campello CC, Smitz J, de Figueiredo JR, Ribeiro Rodrigues AP. Ovine secondary follicles vitrified out the ovarian tissue grow and develop in vitro better than those vitrified into the ovarian fragments. Theriogenology 2015; 85:1203-10. [PMID: 26852069 DOI: 10.1016/j.theriogenology.2015.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/08/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
Abstract
Cryopreservation of preantral follicles is a promising technique to preserve female fertility. The aim of this study was to evaluate the effect of vitrification on the development of secondary follicles included in ovarian tissue or isolated after microdissection. An important end point included is the capacity of grown oocytes to resume meiosis. Sheep ovarian cortexes were cut into fragments and split into three different groups: (1) fresh (control): secondary follicles isolated without any previous vitrification; (2) follicle-vitrification (follicle-vit): secondary follicles vitrified in isolated form; and (3) tissue-vitrification (tissue-vit): secondary follicles vitrified within fragments of ovarian tissue (in situ former) and subsequently subjected to isolation. From the three groups, isolated secondary follicles were submitted to IVC for 18 days. After IVC, cumulus-oocyte complexes (COCs) were harvested from follicles. As an additional control group, in vivo grown, in vivo-grown COCs were collected from antral ovarian follicles. All, recovered COCs were matured and the chromatin configuration was evaluated. Data were analyzed by ANOVA, and the means were compared by Student-Newman-Keuls test, and by chi-square. Differences were considered to be significant when P < 0.05. Isolated preantral follicles from all treatments had normal morphology, antrum formation, and low follicle degeneration after IVC. The growth rate between control and follicle-vit did not differ (P > 0.05), and was higher (P < 0.05) than for tissue-vit. The percentage of follicles that decreased diameter during IVC was significantly higher in tissue-vit than the in follicle-vit. Recovery rate of oocytes from normal follicles was higher in follicle-vit than in tissue-vit. Furthermore, oocyte viability was lower in tissue-vit than other treatments, and follicle-vit did not differ from control and in vivo grown. The percentage of oocytes meiosis resuming was not different between treatments except for in vivo grown. After vitrification, only follicle-vit showed metaphase I oocyte. We conclude that secondary follicles vitrified after isolation displayed a better follicular growth rate, oocyte viability, percentage of oocytes reaching the metaphase I stage, and fewer follicles with decreased diameter after IVC.
Collapse
Affiliation(s)
- Franciele Osmarini Lunardi
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil.
| | - Francisco Leo Nascimento de Aguiar
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Ana Beatriz Graça Duarte
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Valdevane Rocha Araújo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Laritza Ferreira de Lima
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Hudson Henrique Vieira Correia
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | | | - Cláudio Cabral Campello
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Johan Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
| | - José Ricardo de Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| | - Ana Paula Ribeiro Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, Ceará State University, Fortaleza, CE, Brazil
| |
Collapse
|
42
|
Ferreira ACA, Maside C, Sá NAR, Guerreiro DD, Correia HHV, Leiva-Revilla J, Lobo CH, Araújo VR, Apgar GA, Brandão FZ, Figueiredo JR, Campello CC. Balance of insulin and FSH concentrations improves the in vitro development of isolated goat preantral follicles in medium containing GH. Anim Reprod Sci 2015; 165:1-10. [PMID: 26723481 DOI: 10.1016/j.anireprosci.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effect of different combinations of insulin and FSH concentrations in culture media containing GH on the in vitro follicle morphology, antrum formation, growth rates, estradiol (E2) production, oocyte viability and maturation as well as gene expression for FSHR, GHR, INSR, CYP19A1, CYP17, 3ßHSD. Secondary follicles were individually cultured for 18 days in a basic medium containing 50ng/mL GH supplemented with low insulin concentration (INS-LW: 10ng/mL) or high insulin concentration (INS-HG: 10μg/mL) alone or with a fixed FSH concentration (FSH100: 100ng/mL) or with increasing FSH concentrations (FSH-SEQ: 100ng/mL, days 0-6; 500ng/mL, days 6-12; 1000ng/mL days 12-18). In the INS-LW treatment was observed a higher (P<0.05) incidence of normal follicles at day 18 of culture. However, overall higher (P<0.05) follicular growth, oocyte diameter and meiotic resumption rates were obtained using INS-HG+FSH 100. The INS-HG and INS-HG+FSH100 treatments showed higher E2 production and mRNA levels for CYP19A1, CYP17, 3βHSD when compared to INS-LW and INS-LW+FSH100. However, the addition of increasing FSH concentration, regardless of insulin concentration, did not improve the follicular growth, meotic resumption, E2 production or gene expression of steroidogenic enzymes when compared with INS-HG+FSH100. In conclusion, in presence of GH, a basic medium supplemented with 10μg/mL insulin and 100μg/mL FSH throughout the culture period, improves follicular and oocyte growth, oocyte meiotic resumption and E2 production from isolated preantral caprine follicles cultured in vitro.
Collapse
Affiliation(s)
- A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| | - C Maside
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - D D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - H H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J Leiva-Revilla
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - C H Lobo
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - V R Araújo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil; Health Sciences Center, State University of Ceará, Fortaleza, CE, Brazil
| | - G A Apgar
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, USA
| | - F Z Brandão
- Department of Animal Reproduction, Faculty of Veterinary, Federal University Fluminense, Rio de Janeiro, RJ, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
43
|
Araújo V, Gastal M, Wischral A, Figueiredo J, Gastal E. Long-term in vitro culture of bovine preantral follicles: Effect of base medium and medium replacement methods. Anim Reprod Sci 2015; 161:23-31. [DOI: 10.1016/j.anireprosci.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
|
44
|
Sales A, Duarte A, Rodrigues G, Lima L, Silva G, Carvalho A, Brito I, da Maranguape R, Lobo C, Aragão J, Moura A, Figueiredo J, Rodrigues A. Steady-state level of messenger RNA and immunolocalization of aquaporins 3, 7, and 9 during in vitro growth of ovine preantral follicles. Theriogenology 2015; 84:1-10. [DOI: 10.1016/j.theriogenology.2015.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/03/2014] [Accepted: 01/06/2015] [Indexed: 10/23/2022]
|
45
|
Amburana cearensis leaf extract maintains survival and promotes in vitro development of ovine secondary follicles. ZYGOTE 2015; 24:277-85. [PMID: 26083197 DOI: 10.1017/s0967199415000179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The antioxidant properties of Amburana cearensis extract may be a useful substitute for standard cell culture medium. Thus, the aim of this study was to evaluate the effect of this extract, with or without supplementation, on in vitro survival and development of sheep isolated secondary follicles. After collection of the ovaries, secondary follicles were isolated and cultured for 18 days in α-MEM+ supplemented with bovine serum albumin, insulin, transferrin, selenium, glutamine, hypoxanthine and ascorbic acid (control medium) or into medium composed of different concentrations of A. cearensis extract without supplements (Amb 0.1; 0.2 or 0.4 mg/ml) or A. cearensis extract supplemented with the same substances described above for α-MEM+ supplementation. The A. cearensis supplemented medium was named Amb 0.1+; 0.2+ or 0.4+ mg/ml. There were more morphologically normal follicles in Amb 0.1 or Amb 0.4 mg/ml than in the control medium (α-MEM+) after 18 days of culture. Moreover, the percentage of antrum formation was significantly higher in Amb 0.1 or Amb 0.2 mg/ml than in α-MEM+ and Amb 0.1+ mg/ml, and similar to the other treatments. All A. cearensis extract media induced a progressive and significant increase in follicular diameter throughout the culture period. In conclusion, this study showed that 0.1 mg/ml of this extract, without supplementation, maintains follicular survival and promotes the development of ovine isolated secondary follicles in vitro. This extract can be an alternative culture medium for preantral follicle development.
Collapse
|
46
|
Costa SLD, Costa EPD, Pereira ECM, Gonçalves WG, Silva TFD, Queiroz VLD. HUMAN FOLLICLE STIMULATING HORMONE (hFSH) AND THYROXINE (T4) IN SURVIVAL MAINTENANCE AND IN VITRO GROWTH PROMOTION OF CAPRINE PREANTRAL FOLLICLES. CIÊNCIA ANIMAL BRASILEIRA 2015. [DOI: 10.1590/1089-6891v16i231471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate the interaction of human FSH (10ng/ml) with T4 (20ng/mL) on survival, activation and growth of preantral follicles cultured in vitro for 28 days. Fragments of non-cultured and cultured ovarian tissue were processed for classic histology and transmission electron microscopy. The results showed a reduction in the survival rate in all the media tested (one to 28 days) when compared to the fresh control. However the treatment with T4/hFSH for seven days of culture maintained the rate similar to the control. The media tested by one and 28 days reduced the percentage of primordial follicles in all periods of culture. However, T4/hFSH on day one of culture remained similar to the fresh control. None of the media were able to keep the percentage of the developing follicles. It was observed that the follicular diameter in the medium with T4/hFSH remained similar to the fresh control. The ultrastructural analysis confirmed the integrity of follicles cultured for seven days in a medium supplemented with T4/hFSH. In conclusion, the medium with T4/hFSH is able to maintain the survival, promote the activation, and the ultrastructural integrity of caprine preantral follicles for until seven days.
Collapse
|
47
|
Rocha RMP, Alves AMCV, Lima LF, Duarte ABG, Chaves RN, Brito IR, Costa EC, Bernuci MP, Rosa-e-Silva ACJS, Xu M, Rodrigues APR, Campello CC, Figueiredo JR. Is the mouse follicle culture a good model for the goat with respect to the development of preantral follicles in vitro? Domest Anim Endocrinol 2014; 49:27-30. [PMID: 25010025 DOI: 10.1016/j.domaniend.2014.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
The present study evaluated the efficiency of using 2 culture media developed for mice and for goats in the in vitro preantral follicle culture of each species. Murine and caprine secondary follicles were cultured in vitro with human recombinant follicle-stimulating hormone (murine medium) or with bovine recombinant follicle-stimulating hormone in association with growth hormone (caprine medium). The results showed that murine follicles cultured in caprine medium had lower (P < 0.05) rates of follicular survival and growth, whereas for caprine follicles, these variables were not affected by the type of medium used (P > 0.05). After in vitro maturation, a higher (P < 0.05) number of oocytes that resumed meiosis were observed in the murine medium for both species. In contrast, only in the caprine species estradiol production was significantly superior when the caprine medium was used. Higher progesterone production was observed in the presence of the murine medium only for murine follicles (P < 0.05). In conclusion, murine and caprine preantral follicles cultured under the same in vitro culture medium conditions respond differently; caprine oocytes grown in vitro in the presence of the murine medium show the greatest developmental competence among the tested combinations. Therefore, under the present experimental conditions, the mouse follicle culture has proved be a good model for the development of new culture media for caprine preantral follicles.
Collapse
Affiliation(s)
- R M P Rocha
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil.
| | - A M C V Alves
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - L F Lima
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - A B G Duarte
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - R N Chaves
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - I R Brito
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - E C Costa
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - M P Bernuci
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - A C J S Rosa-e-Silva
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - M Xu
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - A P R Rodrigues
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - C C Campello
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| | - J R Figueiredo
- Faculty of Veterinary Medicine, LAMOFOPA, State University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
48
|
Araújo VR, Gastal MO, Wischral A, Figueiredo JR, Gastal EL. In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone. Theriogenology 2014; 82:1246-53. [PMID: 25219848 DOI: 10.1016/j.theriogenology.2014.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/08/2014] [Accepted: 08/01/2014] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the development and estradiol production of isolated bovine secondary follicles in two-dimensional (2D, experiment 1) and three-dimensional (3D using alginate, experiment 2) long-term culture systems in the absence (control group; only α-MEM(+)) or presence of vascular endothelial growth factor (VEGF), insulin-like growth factor-1, or GH alone, or a combination of all. A total of 363 isolated secondary follicles were cultured individually for 32 days at 38.5 °C in 5% CO2 in a humidified incubator with addition of medium (5 μL) every other day. In 2D culture system, follicular growth and antrum formation rates were higher (P < 0.05) in VEGF treatment compared with the other treatments. In 3D culture system, only estradiol concentration was greater (P < 0.05) in the GH than in the control group, whereas the other end points were similar (P > 0.05). In summary, this study demonstrated that the benefits of using a certain type of medium supplement depended on the culture system (2D vs. 3D). Vascular endothelial growth factor was an effective supplement for the in vitro culture of bovine secondary follicles when the 2D culture system was used, whereas GH only affected estradiol production using the 3D culture system. This study sheds light on advancements in methodology to facilitate subsequent studies on bovine preantral follicle development.
Collapse
Affiliation(s)
- V R Araújo
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA; Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - M O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - A Wischral
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA.
| |
Collapse
|
49
|
Brito IR, Silva CMG, Duarte ABG, Lima IMT, Rodrigues GQ, Rossetto R, Sales AD, Lobo CH, Bernuci MP, Rosa-E-Silva ACJS, Campello CC, Xu M, Figueiredo JR. Alginate hydrogel matrix stiffness influences the in vitro development of caprine preantral follicles. Mol Reprod Dev 2014; 81:636-45. [PMID: 24700587 DOI: 10.1002/mrd.22330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/27/2014] [Indexed: 11/08/2022]
Abstract
This study examined caprine follicular development in different concentrations of alginate matrix to determine the optimal conditions for culture. Caprine preantral follicles were cultured in a two-dimensional system (control) or a three-dimensional encapsulated system in 0.25%, 0.5%, or 1% alginate (ALG 0.25, ALG 0.5, and ALG 1, respectively). A higher percentage of morphologically normal follicles developed in ALG 0.5 and ALG 1 than in ALG 0.25 or the control (P < 0.05). The rate of antrum formation, however, was higher in ALG 0.25 than in ALG 0.5 and ALG 1 conditions (P < 0.05), but similar to the control. Follicles cultured in ALG 0.25 had higher growth rates and meiotic resumption than those cultured in ALG 0.5, ALG 1, or the control (P < 0.05). Moreover, follicles cultured in ALG 0.25 had higher levels of estradiol and progesterone than those cultured in ALG 0.5, ALG 1, or the control, as well as higher levels of CYP19A1 and HSD3B mRNA. In conclusion, a three-dimensional system that uses ALG 0.25 fosters the in vitro development of caprine preantral follicles and increases the rate of meiotic resumption.
Collapse
Affiliation(s)
- I R Brito
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pessoa AFC, Rocha RMP, Brito IR, Silva GM, Chaves RN, Magalhães-Padilha DM, Campello CC, Rodrigues APR, Nunes-Pinheiro DCS, Figueiredo JR. Effect of morphological integrity, period, and type of culture system on the in vitro development of isolated caprine preantral follicles. Theriogenology 2014; 82:312-7. [PMID: 24839921 DOI: 10.1016/j.theriogenology.2014.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
Abstract
The aims of this study were the following: (1) to define an optimal period for the IVC of isolated caprine preantral follicles, (2) to verify the relationship between follicular morphology (intact, extruded, and degenerate follicles) and estradiol production, and (3) to evaluate the effects of the bidimensional (2D) and three-dimensional (3D) culture systems on the in vitro development of caprine preantral follicles. Three experiments were performed. In experiments 1 and 2, the isolated secondary follicles were cultured for 18, 24, and 30 days or 30, 36, and 42 days, respectively. In experiment 3, the optimal culture period from experiment 2 was used for 2D and 3D culture systems. After culture, the oocytes were submitted to IVM. The morphological integrity, antral cavity formation rates, follicular diameter, presence of healthy, grown oocytes (≥110 μm), rates of resumption of meiosis, and estradiol concentrations were evaluated. In experiment 1, the percentage of oocytes that resumed meiosis was higher in oocytes cultured for 30 days (48.84%) than in oocytes cultured for 18 and 24 days (15% and 20.93%, respectively). In experiment 2, the percentage of oocytes that resumed meiosis was significantly higher in oocytes cultured for 30 and 36 days (47.5% and 50%, respectively) than in oocytes cultured for 42 days (20%). The estradiol concentrations on Day 12 of culture were similar for normal and extruded follicles and higher than those observed in degenerate follicles at the end of the culture period. In conclusion, the 36-day culture period resulted in the highest rates of meiosis resumption. In addition, because the loss of follicular integrity affects the patterns of estradiol production, follicular integrity is a good predictor of follicular quality.
Collapse
Affiliation(s)
- A F C Pessoa
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil.
| | - R M P Rocha
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| | - I R Brito
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| | - G M Silva
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| | - R N Chaves
- Health Center, University of Fortaleza (UNIFOR), Edson Queiroz, Fortaleza, Ceará, Brazil
| | - D M Magalhães-Padilha
- Potiguar University/Laureate International Universities, Lagoa Nova, Natal, Ceará, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| | - D C S Nunes-Pinheiro
- Laboratory of Animal Biochemistry and Immunology Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|