1
|
Sahlu BW, Wang H, Hu Z, Heng N, Gong J, Wang H, Zhu H, Zhao S. Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on Holstein bull testis after sexual maturity. Anim Reprod Sci 2023; 258:107360. [PMID: 39492239 DOI: 10.1016/j.anireprosci.2023.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Spermatogenesis is an extremely sophisticated and complex process and is regulated not only by a large number of genes, but also by a large number of epigenetic factors. Although existing studies have demonstrated that circRNAs plays an important regulatory role in spermatogenesis, there is still insufficient information to properly understand the regulatory role and mechanism of circRNA action. We addressed this issue by examining the testes of two Holstein bull developmental stages; three 8-week-olds (young bull, YB) and three 80-week-olds (adult bull, AB), randomly selected from the same breeding stock. A total of 3032 circRNAs, 683 miRNAs were identified as significantly differentially expressed noncoding RNAs, and 14,081 mRNAs. Based on these results, a circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network was constructed containing 3298 targeted regulatory axes. Modular analysis revealed a total of four modules in the ceRNA regulatory network. Functional analysis of these results showed that the ceRNA regulatory network in AB testis exhibited more positive regulatory effects on the spermatogenesis cycle checkpoints, chromosome and cytoplasm segregation, sperm tail formation, and sperm motility. In addition, screening combining the results of our previous studies on lncRNA regulation of spermatogenesis revealed 4 genes (FOXO4, PPP1CB, CDC26, and CDKN1B) that co-exist in the 2 ceRNA regulatory networks, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA. A ceRNA regulatory network was constructed based on these genes. This study demonstrated the possible regulatory role of circRNAs in adult testicular spermatogenesis based on constructed transcriptome profiles and furtzher broadened our understanding of the regulatory role of circRNAs in spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Huan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhihui Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nuo Heng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianfei Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shanjiang Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Cheng X, Huang Z, Pan A, Long D. ORLNC1 Suppresses Cell Growth in HER2-Positive Breast Cancer via miRNA-296 Sponging. Curr Mol Med 2023; 23:289-299. [PMID: 35658886 DOI: 10.2174/1566524022666220603113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Accumulating research has demonstrated that aberrant levels of long noncoding RNAs (LncRNAs) are related to cancer progression. The effects of ORLNC1 in HER2+ breast cancer have yet to be explored. METHODS Real-time PCR was used to examine the expression of LncRNA ORLNC1 in HER+ breast cancer. CCK-8, wound healing and cell invasion assays were used to examine the effect of LncRNA ORLNC1 on HER+ breast cancer cells. Luciferase reporter assay was utilized to determine the regulatory relationship between LncRNA ORLNC1 and miR-296. Western blotting was used to measure the expression of PTEN. Xenograft mouse model was used to examine the effect of LncRNA ORLNC1 on tumor progression in vivo. RESULTS In this study, our findings revealed downregulation of ORLNC1 in HER2+ breast cancer specimens and cell lines. Low levels of ORLNC1 were related to poor prognosis and advanced cancer stage. Using gain- and loss-of-function assays, the ability of these tumor cells to proliferate was found to be inhibited by ORLNC1 in vitro and in vivo. Further analyses revealed that miR-296/PTEN axis is directly targeted by ORLNC1. Consequently, over-expression of miR-296 efficiently abrogated the upregulation of PTEN induced by ORLNC1, suggesting that ORLNC1 positively regulates PTEN expression by competitively binding to miR-296. CONCLUSION Our results indicate that lncRNA ORLNC1 acts as a tumor suppressor by regulating the miR-296/PTEN axis in HER2+ breast cancer.
Collapse
Affiliation(s)
- Xueyuan Cheng
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi, 536000, China
| | - Zhong Huang
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi, 536000, China
| | - Anchao Pan
- Department of Gastrointestinal Surgery, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| | - Di Long
- Department of Gastrointestinal Surgery, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| |
Collapse
|
3
|
Zhang J, Shen Q, Xia L, Zhu X, Zhu X. DYNLT3 overexpression induces apoptosis and inhibits cell growth and migration via inhibition of the Wnt pathway and EMT in cervical cancer. Front Oncol 2022; 12:889238. [PMID: 35965516 PMCID: PMC9372440 DOI: 10.3389/fonc.2022.889238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
The role of the dynein light chain Tctex-type 3 (DYNLT3) protein in the biological behavior of cervical cancer and its relative molecular mechanisms were investigated. Immunohistochemical staining was used to detect DYNLT3 protein expression in cervical cancer tissues. Cell proliferation and apoptosis rates and invasiveness and migratory capacities were determined by CCK-8 assays, BrdU staining assays and colony formation assays, fluorescence activated cell sorting (FACS), wound healing assays, and Transwell invasion assays of cervical cancer cells after DYNLT3 modulation. The expression levels of Wnt signaling pathway- and EMT-related proteins were examined by Western blotting. Furthermore, the effects of DYNLT3 on the tumorigenicity and metastasis of cervical cancer in nude mice were analyzed by performing immunohistochemistry, and we found that the expression level of the DYNLT3 protein was higher in human normal cervical tissues than in cervical cancer tissues. Overexpression of DYNLT3 obviously attenuated the proliferation, migration and invasion of CaSki and SiHa cells, and promoted cell apoptosis. Upregulation of DYNLT3 expression markedly decreased the expression of Wnt signaling pathway-related proteins (Dvl2, Dvl3, p-LRP6, Wnt3a, Wnt5a/b, Naked1, Naked2, β-catenin and C-Myc) and EMT-related proteins (N-cadherin, SOX2, OCT4, vimentin and Snail), and increased the expression of E-cadherin and Axin1. However, the opposite results were observed after down-regulation of DYNLT3 expression. Up-regulation of DYNLT3 expression significantly inhibited tumor growth in a nude mouse model, while downregulation of DYNLT3 showed the opposite results. In addition, the major metastatic site of cervical cancer cells in mice was the lung, and downregulation of DYNLT3 expression increased cancer metastasis in vivo. DYNLT3 exerted inhibitory effects on cervical cancer by inhibiting cell proliferation, migration and invasion, promoting cell apoptosis in vitro, and inhibiting tumor growth and metastasis in vivo, possibly by suppressing the Wnt signaling pathway and the EMT.
Collapse
Affiliation(s)
- Jianan Zhang
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Shen
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xia
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejie Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Tan X, Zhang Z, Liu P, Yao H, Shen L, Tong JS. Inhibition of EZH2 enhances the therapeutic effect of 5-FU via PUMA upregulation in colorectal cancer. Cell Death Dis 2020; 11:1061. [PMID: 33311453 PMCID: PMC7733595 DOI: 10.1038/s41419-020-03266-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Although the survival rate of patients with cancer have increased due to the use of current chemotherapeutic agents, adverse effects of cancer therapy remain a concern. The reversal of drug resistance, reduction in harmful side effects and accelerated increase in efficiency have often been addressed in the development of combination therapeutics. Tazemetostat (EPZ-6438), a histone methyltransferase EZH2 selective inhibitor, was approved by the FDA for the treatment of advanced epithelioid sarcoma. However, the effect of tazemetostat on colorectal cancer (CRC) and 5-FU sensitivity remains unclear. In this study, the enhancement of tazemetostat on 5-FU sensitivity was examined in CRC cells. Our findings demonstrated that tazemetostat combined with 5-FU exhibits synergistic antitumor function in vitro and in vivo in CRC cells. In addition, tazemetostat promotes PUMA induction through the ROS/ER stress/CHOP axis. PUMA depletion attenuates the antitumor effect of the combination therapy. Therefore, tazemetostat may be a novel treatment to improve the sensitivity of tumors to 5-FU in CRC therapy. In conclusion, the combination of 5-FU and tazemetostat shows high therapeutic possibility with reduced unfavorable effects.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China.
| | - Zhongqiang Zhang
- Department of Liver Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Zhang Z, Chen B, Cui H, Gao H, Gao M, Tao C. Dynamic alterations in H4K12 acetylation during meiotic maturation and after parthenogenetic activation of mouse oocytes. ZYGOTE 2020; 28:1-4. [PMID: 32698925 DOI: 10.1017/s0967199420000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of the study was to investigate the continuous changing pattern of H4K12 acetylation, and the expression levels of histone acetyltransferases (HATs) and histone deacetyltransferases (HDACs) in mouse oocytes during meiosis and after parthenogenetic activation (PA). The immunofluorescence results showed hyperacetylation of lysine-12 on histone H4 (H4K12) in the germinal vesicle (GV) oocytes that then decreased during germinal vesicle breakdown (GVBD), and disappeared in metaphase II (MII). However, it reappeared in the early 1-cell embryos derived after 4 h of PA. The expression levels of some selected HATs and HDACs also validated the changing pattern of H4K12 acetylation during meiosis and PA. In conclusion, H4K12 is deacetylated in GVBD and MII, and re-hyperacetylated after PA.
Collapse
Affiliation(s)
- Ze Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071000China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210000China
| | - Haoliang Cui
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071000China
| | - Haixu Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071000China
| | - Ming Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071000China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071000China
| |
Collapse
|
6
|
Shami AN, Zheng X, Munyoki SK, Ma Q, Manske GL, Green CD, Sukhwani M, Orwig KE, Li JZ, Hammoud SS. Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian Spermatogenesis. Dev Cell 2020; 54:529-547.e12. [PMID: 32504559 DOI: 10.1016/j.devcel.2020.05.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Spermatogenesis is a highly regulated process that produces sperm to transmit genetic information to the next generation. Although extensively studied in mice, our current understanding of primate spermatogenesis is limited to populations defined by state-specific markers from rodent data. As between-species differences have been reported in the duration and differentiation hierarchy of this process, it remains unclear how molecular markers and cell states are conserved or have diverged from mice to man. To address this challenge, we employ single-cell RNA sequencing to identify transcriptional signatures of major germ and somatic cell types of the testes in human, macaque, and mice. This approach reveals similarities and differences in expression throughout spermatogenesis, including the stem/progenitor pool of spermatogonia, markers of differentiation, potential regulators of meiosis, RNA turnover during spermatid differentiation, and germ cell-soma communication. These datasets provide a rich foundation for future targeted mechanistic studies of primate germ cell development and in vitro gametogenesis.
Collapse
Affiliation(s)
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah K Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel L Manske
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Meena Sukhwani
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Zhou L, Ye M, Xue F, Lu E, Sun LZ, Zhu X. Effects of dynein light chain Tctex-type 3 on the biological behavior of ovarian cancer. Cancer Manag Res 2019; 11:5925-5938. [PMID: 31308737 PMCID: PMC6612992 DOI: 10.2147/cmar.s205158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/27/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To investigate dynein light chain Tctex-type 3 (DYNLT3) protein expression in ovarian epithelial lesions and explore the effects and related mechanisms of DYNLT3 in terms of the biological behavior of ovarian cancer. MATERIALS AND METHODS Initially, expression of the DYNLT3 protein in ovarian epithelial lesions was detected by immunohistochemical staining, and the prognostic value of DYNLT3 mRNA expression in ovarian cancer patients was assessed using the Kaplan-Meier plotter database. Then, the mRNA and protein expression of DYNLT3 in IOSE80 normal ovarian epithelial cells and SKOV3 ovarian cancer cells was evaluated by quantitative real-time polymerase chain reaction and Western blotting respectively, and the proliferation, apoptosis, migration and invasion of SKOV3 cells after DYNLT3 over-expression and under-expression were investigated by CCK-8 assays and immunofluorescence staining, flow cytometry, wound healing assays and Transwell invasion assays, respectively. Furthermore, the expression of the proliferation-related proteins PCNA and Ki-67 and the invasion- and migration-related proteins Ezrin, Fascin, MMP2 and MMP9 in cells was examined by Western blotting. RESULTS The protein expression of DYNLT3 gradually increased during the progression of ovarian epithelial lesions, and was related to the development of ovarian cancer. High expression of DYNLT3 mRNA was related to poor overall survival and progression free survival, especially in serous ovarian cancer patients. In addition, overexpression of DYNLT3 promoted SKOV3 cell proliferation, invasion and migration. The corresponding results were also verified by a DYNLT3 knockdown assay. Moreover, DYNLT3 increased cell proliferation, which was related to Ki-67 expression. Besides, DYNLT3 enhanced cell invasion and migration through regulating Ezrin, but not Fascin, MMP2 or MMP9. CONCLUSION DYNLT3 exerts pro-tumoral effects on ovarian cancer through promoting cell proliferation, migration and invasion, possibly via regulating the protein expression of Ki-67 and Ezrin. DYNLT3 may be a potential prognostic predictor in ovarian cancer.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Ermei Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Lu-Zhe Sun
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| |
Collapse
|
8
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
9
|
Li FP, Zhou JL, Guo AW, Liu Y, Zhang F, Xu BH, Liu R, Wang YL, Chen MH, Lin YH, He SW, Liao BQ, Fu XP, Wang HL. Di(n-butyl) phthalate exposure impairs meiotic competence and development of mouse oocyte. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:597-607. [PMID: 30605815 DOI: 10.1016/j.envpol.2018.12.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Di(n-butyl) phthalate (DBP) is extensively used in industrial applications as plasticizer and stabilizer and its presence in the environment may present health risks for human. Previous studies have demonstrated its mutagenic, teratogenic, and carcinogenic ability. However, its effect on mammalian oocyte maturation remains unknown. In this study, we examined the effect of DBP on oocyte maturation both in vitro and in vivo. Our results showed that DBP could significantly reduce mice oocyte germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) rates. In addition, oocyte cytoskeleton was damaged and cortical granule-free domains (CGFDs) were also disrupted. Finally, DBP induced early apoptosis of oocyte and granulosa cells (GCs). Collectively, these data demonstrate that DBP could reduce meiosis competence and mouse oocyte development.
Collapse
Affiliation(s)
- Fei-Ping Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Jie-Long Zhou
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, China
| | - Ai-Wei Guo
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, China
| | - Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fei Zhang
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Bai-Hui Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China
| | - Rui Liu
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China
| | - Ming-Huang Chen
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hong Lin
- Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Shu-Wen He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China
| | - Bao-Qiong Liao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Department of Gynaecology and Obstetrics, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Shen YT, Song YQ, He XQ, Zhang F, Huang X, Liu Y, Ding L, Xu L, Zhu MB, Hu WF, Qi ZQ, Wang HL, Yang XJ. Triphenyltin chloride induces spindle microtubule depolymerisation and inhibits meiotic maturation in mouse oocytes. Reprod Fertil Dev 2014; 26:1084-93. [DOI: 10.1071/rd12332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 08/01/2013] [Indexed: 01/04/2023] Open
Abstract
Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.
Collapse
|
12
|
Sitaram P, Merkle JA, Lee E, Lee LA. asunder is required for dynein localization and dorsal fate determination during Drosophila oogenesis. Dev Biol 2013; 386:42-52. [PMID: 24333177 DOI: 10.1016/j.ydbio.2013.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
We previously showed that asunder (asun) is a critical regulator of dynein localization during Drosophila spermatogenesis. Because the expression of asun is much higher in Drosophila ovaries and early embryos than in testes, we herein sought to determine whether ASUN plays roles in oogenesis and/or embryogenesis. We characterized the female germline phenotypes of flies homozygous for a null allele of asun (asun(d93)). We find that asun(d93) females lay very few eggs and contain smaller ovaries with a highly disorganized arrangement of ovarioles in comparison to wild-type females. asun(d93) ovaries also contain a significant number of egg chambers with structural defects. A majority of the eggs laid by asun(d93) females are ventralized to varying degrees, from mild to severe; this ventralization phenotype may be secondary to defective localization of gurken transcripts, a dynein-regulated step, within asun(d93) oocytes. We find that dynein localization is aberrant in asun(d93) oocytes, indicating that ASUN is required for this process in both male and female germ cells. In addition to the loss of gurken mRNA localization, asun(d93) ovaries exhibit defects in other dynein-mediated processes such as migration of nurse cell centrosomes into the oocyte during the early mitotic divisions, maintenance of the oocyte nucleus in the anterior-dorsal region of the oocyte in late-stage egg chambers, and coupling between the oocyte nucleus and centrosomes. Taken together, our data indicate that asun is a critical regulator of dynein localization and dynein-mediated processes during Drosophila oogenesis.
Collapse
Affiliation(s)
- Poojitha Sitaram
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | - Julie A Merkle
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | - Laura A Lee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA.
| |
Collapse
|
13
|
Huang X, Ding L, Pan R, Ma PF, Cheng PP, Zhang CH, Shen YT, Xu L, Liu Y, He XQ, Qi ZQ, Wang HL. WHAMM is required for meiotic spindle migration and asymmetric cytokinesis in mouse oocytes. Histochem Cell Biol 2012; 139:525-34. [PMID: 23160625 DOI: 10.1007/s00418-012-1051-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2012] [Indexed: 11/25/2022]
Abstract
WASP homolog associated with actin, membranes and microtubules (WHAMM) is a newly discovered nucleation-promoting factor that links actin and microtubule cytoskeleton and regulates transport from the endoplasmic reticulum to the Golgi apparatus. However, knowledge of WHAMM is limited to interphase somatic cells. In this study, we examined its localization and function in mouse oocytes during meiosis. Immunostaining showed that in the germinal vesicle (GV) stage, there was no WHAMM signal; after meiosis resumption, WHAMM was associated with the spindle at prometaphase I (Pro MI), metaphase I (MI), telophase I (TI) and metaphase II (MII) stages. Nocodazole and taxol treatments showed that WHAMM was localized around the MI spindle. Depletion of WHAMM by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in failure of spindle migration, disruption of asymmetric cytokinesis and a decrease in the first polar body extrusion rate during meiotic maturation. Moreover, actin cap formation was also disrupted after WHAMM depletion, confirming the failure of spindle migration. Taken together, our data suggest that WHAMM is required for peripheral spindle migration and asymmetric cytokinesis during mouse oocyte maturation.
Collapse
Affiliation(s)
- Xin Huang
- Organ Transplantation Institute, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sitaram P, Anderson MA, Jodoin JN, Lee E, Lee LA. Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis. Development 2012; 139:2945-54. [PMID: 22764052 DOI: 10.1242/dev.077511] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynein, a microtubule motor complex, plays crucial roles in cell-cycle progression in many systems. The LIS1 accessory protein directly binds dynein, although its precise role in regulating dynein remains unclear. Mutation of human LIS1 causes lissencephaly, a developmental brain disorder. To gain insight into the in vivo functions of LIS1, we characterized a male-sterile allele of the Drosophila homolog of human LIS1. We found that centrosomes do not properly detach from the cell cortex at the onset of meiosis in most Lis-1 spermatocytes; centrosomes that do break cortical associations fail to attach to the nucleus. In Lis-1 spermatids, we observed loss of attachments between the nucleus, basal body and mitochondria. The localization pattern of LIS-1 protein throughout Drosophila spermatogenesis mirrors that of dynein. We show that dynein recruitment to the nuclear surface and spindle poles is severely reduced in Lis-1 male germ cells. We propose that Lis-1 spermatogenesis phenotypes are due to loss of dynein regulation, as we observed similar phenotypes in flies null for Tctex-1, a dynein light chain. We have previously identified asunder (asun) as another regulator of dynein localization and centrosome positioning during Drosophila spermatogenesis. We now report that Lis-1 is a strong dominant enhancer of asun and that localization of LIS-1 in male germ cells is ASUN dependent. We found that Drosophila LIS-1 and ASUN colocalize and coimmunoprecipitate from transfected cells, suggesting that they function within a common complex. We present a model in which Lis-1 and asun cooperate to regulate dynein localization and centrosome positioning during Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Poojitha Sitaram
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
15
|
Ding L, Pan R, Huang X, Wang JX, Shen YT, Xu L, Zhang Y, Liu Y, He XQ, Yang XJ, Qi ZQ, Wang HL. Changes in histone acetylation during oocyte meiotic maturation in the diabetic mouse. Theriogenology 2012; 78:784-92. [PMID: 22541329 DOI: 10.1016/j.theriogenology.2012.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/05/2023]
Abstract
Although there is considerable evidence that diabetes can adversely affect meiosis in mammalian oocytes, acetylation status of oocytes in a diabetic environment remains unclear. The objective was to determine acetylation or deacetylation patterns (based on immunostaining) of H3K9, H3K14, H4K5, H4K8, H4K12, and H4K16 sites at various stages during meiosis in murine oocytes from control and diabetic mice. According to quantitative real time polymerase chain reaction (qPCR), mean ± SEM relative expression of Gcn5 (1.70 ± 0.14 at metaphase [M]I and 1.27 ± 0.01 at MII, respectively), Ep300 (1.74 ± 0.04 at MI and 1.80 ± 0.001 at MII), and Pcaf (2.01 ± 0.03 at MI and 1.41 ± 0.18 at MII) mRNA in oocytes from diabetic mice were higher than those from controls (P < 0.05), whereas there was no difference (P > 0.05) during the germinal vesicle (GV) stage between the two groups (1.23 ± 0.04 for Gcn5, 0.82 ± 0.06 for Ep300, and 0.80 ± 0.07 for Pcaf). Conversely, relative mRNA expression concentrations of Hdac1, Hdac2, Hdac3, Sirt1 and Sirt2 during the germinal vesicle stage were lower in oocytes of diabetic mice (0.24 ± 0.03 for Hdac1, 0.11 ± 0.001 for Hdac2, 0.31 ± 0.03 for Hdac3, 0.28 ± 0.02 for Sirt1, and 0.55 ± 0.02 for Sirt2; P < 0.05). Similarly, the expression concentrations of these genes at the MI stage were lower in oocytes from diabetic mice (0.79 ± 0.12 for Hdac1, 0.72 ± 0.001 for Hdac2, 0.02 ± 0.001 for Sirt1, and 0.84 ± 0.08 for Sirt2; P < 0.05). Their expression concentrations at the MII stage were also lower in oocytes from diabetic mice (0.46 ± 0.03 for Hdac1, 0.93 ± 0.01 for Hdac2, 0.56 ± 0.01 for Hdac3, 0.01 ± 0.002 for Sirt1, and 0.84 ± 0.04 for Sirt2; P < 0.05). At the MI stage, however, there was no difference in the expression of Hdac3 between the two groups of oocytes (0.96 ± 0.03; P > 0.05). Taken together, diabetes altered the intracellular histone modification system, which may have contributed to changes in histone acetylation, and may be involved in the compromised maturation rate of oocytes in diabetic humans.
Collapse
Affiliation(s)
- L Ding
- Organ Transplantation Institute, Xiamen University, Xiamen City, Fujian Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|