1
|
Greenberg HZE, Jahan KS, Shi J, Vanessa Ho WS, Albert AP. The calcilytics Calhex-231 and NPS 2143 and the calcimimetic Calindol reduce vascular reactivity via inhibition of voltage-gated Ca 2+ channels. Eur J Pharmacol 2016; 791:659-668. [PMID: 27725162 PMCID: PMC5127511 DOI: 10.1016/j.ejphar.2016.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
The present study investigates the effect of commonly used negative and positive allosteric modulators of the calcium-sensing receptor (CaSR) on vascular reactivity. In wire myography studies, increasing [Ca2+]o from 1mM to 6mM induced concentration-dependent relaxations of methoxamine-induced pre-contracted rabbit mesenteric arteries, with 6mM [Ca2+]o producing almost complete relaxation. [Ca2+]o-induced relaxations were attenuated in the presence of the calcilytics Calhex-231 and NPS 2143, and abolished by the removal of the endothelium. In addition to their calcilytic effects, Calhex-231 and NPS 2143 also produced concentration-dependent inhibitions of methoxamine- or KCl-induced precontracted tone, which were unaffected by removal of the endothelium and unopposed in the presence of the calcimimetic Calindol. In vessels with depleted Ca2+ stores, contractions mediated by Ca2+ influx via voltage-gated Ca2+ channels (VGCCs) were inhibited by Calhex231. In freshly isolated single rabbit mesenteric artery smooth muscle cells, Calhex-231 and NPS 2143 inhibited whole-cell VGCC currents. Application of Calindol also inhibited methoxamine- and KCl-induced pre-contracted tone, and inhibited whole-cell VGCC currents. In conclusion, in addition to their CaSR-mediated actions in the vasculature, Calhex-231, NPS 2143 and Calindol reduce vascular contractility via direct inhibition of VGCCs.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Vascular Biology Research Centre, Institute of Cardiovascu lar & Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Kazi S Jahan
- Vascular Biology Research Centre, Institute of Cardiovascu lar & Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jian Shi
- Vascular Biology Research Centre, Institute of Cardiovascu lar & Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - W-S Vanessa Ho
- Vascular Biology Research Centre, Institute of Cardiovascu lar & Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Anthony P Albert
- Vascular Biology Research Centre, Institute of Cardiovascu lar & Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
2
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
3
|
Herington JL, Swale DR, Brown N, Shelton EL, Choi H, Williams CH, Hong CC, Paria BC, Denton JS, Reese J. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility. PLoS One 2015; 10:e0143243. [PMID: 26600013 PMCID: PMC4658040 DOI: 10.1371/journal.pone.0143243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 11/02/2015] [Indexed: 12/27/2022] Open
Abstract
The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility.
Collapse
Affiliation(s)
- Jennifer L. Herington
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| | - Daniel R. Swale
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Naoko Brown
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Elaine L. Shelton
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Hyehun Choi
- Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Charles H. Williams
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Charles C. Hong
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bibhash C. Paria
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jeff Reese
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Crankshaw DJ, Walsh JM, Morrison JJ. The effects of methyl palmitate, a putative regulator from perivascular fat, on the contractility of pregnant human myometrium. Life Sci 2014; 116:25-30. [DOI: 10.1016/j.lfs.2014.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/05/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
|