1
|
Xue Y, Pei X, Xia Y, Chen H, Yu H, Wang W, Mao D. RGMb expression in goat uterine tissues: possible role of RGMb in the proliferation and apoptosis of endometrial epithelial cells. Reprod Fertil Dev 2023; 35:723-732. [PMID: 37967584 DOI: 10.1071/rd23121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Context Bone morphogenetic proteins (BMPs) play an important role in the uteri. Repulsive guidance molecule b (RGMb; a.k.a. Dragon) has been confirmed as the coreceptor of BMPs to function through drosophila mothers against decapentaplegic protein (Smads) and mitogen-activated protein kinases (MAPK) pathways. We hypothesise that RGMb regulates the uterine function through the Smads and MAPK pathways. Aims This study aimed to investigate the expression of RGMb in goat uteri and the potential role of RGMb in the endometrial epithelial cells (EECs). Methods The localisation of RGMb in goat uterine tissues was detected by immunohistochemistry (IHC), EECs were isolated and transfected with siRNA to investigate the role of RGMb in proliferation, and apoptosis. The expression levels of Smads and MAPK members was measured by western blot (WB) and real-time PCR (RT-PCR). Key results IHC showed that RGMb was localised in goat endometrial luminal cells, glandular epithelial cells, and circular muscle fibres, but not in stromal cells. RT-PCR results showed that treatment with RGMb siRNA suppressed the expressions of proliferation-related genes cyclin D1 (CCND1 , P =0.0291), cyclin-dependent kinase 2 (CDK2 P =0.0107), and proliferating cell nuclear antigen (PCNA, P =0.0508), leading to the reduced viability of EECs (P =0.0010). WB results showed that the expression ratio of cleaved-caspase 3/caspase 3 (P =0.0013) was markedly increased after RGMb siRNA transfection. Likewise, the level of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2, P =0.0068) and p-Smad1/5/8 (P =0.0011) decreased significantly, while there were no appreciable differences in the level of p-P38 MAPK expression (P >0.05). Conclusions RGMb might participate in the regulation of cell proliferation and apoptosis through Smads and ERK signalling pathways in goat EECs. Implications RGMb is involved in regulating the proliferation and apoptosis in goat endometrial epithelial cells.
Collapse
Affiliation(s)
- Yang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuting Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hengguang Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Wang J, Wang J, Quan J, Liu J, Tian L, Dong C. Relationship between serum NDRG3 and papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:1091462. [PMID: 36619553 PMCID: PMC9811643 DOI: 10.3389/fendo.2022.1091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In recent years, papillary thyroid carcinoma is considered to be one of the fastest increaseing cancer. NDRG family member 3 (NDRG3) has been proposed as a molecular marker of tumor, and is expected to be used in clinic. METHODS Enzyme-linked immunosorbent assay was used to detect the serum NDRG3 expression in 81 papillary thyroid carcinoma cases, 75 benign thyroid nodules cases and 77 healthy control cases, respectively. Electrochemiluminescence method was applied to measure the levels of triiodothyronine, tetraiodothyronine, thyrotropin, thyroglobulin antibody and thyroid peroxidase antibody. Immunohistochemical staining was used to detect the expression of NDRG3 in papillary thyroid carcinoma, benign thyroid nodules and normal tissues adjacent to cancer. RESULTS The expression of serum triiodothyronine, tetraiodothyronine, thyrotropin, thyroglobulin antibody and thyroid peroxidase antibody and NDRG3 were significantly different among benign thyroid nodules, papillary thyroid carcinoma cases and healthy control groups (P <0.001). Only the expression of serum NDRG3 was significantly different between benign thyroid nodules and papillary thyroid carcinoma groups (P <0.001). Immunohistochemistry showed that NDRG3 was expressed in all three groups, the lowest in papillary thyroid carcinoma, the second in benign thyroid nodules, and the highest in normal tissues adjacent to cancer. Logistic regression analysis showed that serum NDRG3 was an independent protective factor for papillary thyroid carcinoma (OR =0.964, 95%CI =0.953 to 0.974, P <0.001). The ROC curve of non-papillary thyroid carcinoma diagnosed by serum NDRG3 showed the optimal cut-off value of 481.38 pg/ml, sensitivity of 72.4%, specificity of 90.1%, and the maximum area under the curve (AUC =0.902, 95%CI =0.863 to 0.940, P <0.001). The ROC curve of benign thyroid nodules diagnosed by serum NDRG3 showed the optimal critical value of 459.28 pg/ml, sensitivity of 81.3%, and specificity of 74.1% (AUC =0.863, 95%CI =0.808 to 0.919, P <0.001). The expression level of serum NDRG3 was significantly correlated with extrathyroid extensionand (P =0.007) and lymphatic metastasis of papillary thyroid carcinoma (P =0.019). CONCLUSIONS The decrease of NDRG3 expression can not only differential diagnosis benign thyroid nodules and papillary thyroid carcinoma, but also serve as a molecular marker for the diagnosis of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Jiahao Wang
- The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jun Wang
- Department of Thyroid and Breast Surgery, Gansu Cancer Hospital, Lanzhou, Gansu, China
| | - Jinxing Quan
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Jinxing Quan,
| | - Juxiang Liu
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Limin Tian
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Changhong Dong
- Radiotherapy Department of Gansu Maternal and Child Health Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Liu T, Shi F, Ying Y, Chen Q, Tang Z, Lin H. Mouse model of menstruation: An indispensable tool to investigate the mechanisms of menstruation and gynaecological diseases (Review). Mol Med Rep 2020; 22:4463-4474. [PMID: 33174022 PMCID: PMC7646730 DOI: 10.3892/mmr.2020.11567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal menstruation may result in several pathological alterations and gynaecological diseases, including endometriosis, menstrual pain and miscarriage. However, the pathogenesis of menstruation remains unclear due to the limited number of animal models available to study the menstrual cycle. In recent years, an effective, reproducible, and highly adaptive mouse model to study menstruation has been developed. In this model, progesterone and oestrogen were administered in cycles following the removal of ovaries. Subsequently, endometrial decidualisation was induced using sesame oil, followed by withdrawal of progesterone administration. Vaginal bleeding in mice is similar to that in humans. Therefore, the use of mice as a model organism to study the mechanism of menstruation and gynaecological diseases may prove to be an important breakthrough. The present review is focussed ond the development and applications of a mouse model of menstruation. Furthermore, various studies have been described to improve this model and the research findings that may aid in the treatment of menstrual disorders in women are presented.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Fuli Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfeng Chen
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Liu H, Huang X, Mor G, Liao A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci 2020; 77:2091-2101. [PMID: 31813015 PMCID: PMC11105058 DOI: 10.1007/s00018-019-03395-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes' expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Shi J, Zheng H, Yuan L. High NDRG3 expression facilitates HCC metastasis by promoting nuclear translocation of β-catenin. BMB Rep 2020. [PMID: 31072445 PMCID: PMC6675243 DOI: 10.5483/bmbrep.2019.52.7.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NDRG1 has been reported to exert pivotal roles in tumor progression and metastasis via Wnt/β-catenin signaling pathway. However, little is known about the role of NDRG3 in hepatocarcinogenesis despite its classification in the same subfamily of NDRG1. The present study was aimed to characterize the expression pattern and understand the biological roles of NDRG3 in hepatocarcinogenesis, as a means to exploit its therapeutic potential. It was observed that NDRG3 was up-regulated in HCC tissues and higher NDRG3 expression was associated with significantly shorter overall survival. Furthermore, a lower level of NDRG3 exhibited marked positive correlation with metastasis-free survival. In vitro and in vivo experiments revealed that knock-down of NDRG3 inhibits HCC metastasis and angiogenesis. We further demonstrated that activation of WNT/β-catenin signaling and enhanced CSC-like properties were responsible for NDRG3- mediated promoting effect on HCC. In conclusion, the principal findings demonstrated that high NDRG3 expression facilitates HCC metastasis via regulating the turnover of β-catenin, as well as provides a potential therapeutic target for future therapeutic interventions.
Collapse
Affiliation(s)
- JiKui Shi
- Department of Critical Care Medicine, Jining NO.1 People's Hospital, Jining 272011, P.R. China
| | - HongZhen Zheng
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200040, P.R. China
| | - LingYan Yuan
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
Kiser JN, Clancey E, Moraes JGN, Dalton J, Burns GW, Spencer TE, Neibergs HL. Identification of loci associated with conception rate in primiparous Holstein cows. BMC Genomics 2019; 20:840. [PMID: 31718557 PMCID: PMC6852976 DOI: 10.1186/s12864-019-6203-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/21/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Subfertility is a major issue facing the dairy industry as the average US Holstein cow conception rate (CCR) is approximately 35%. The genetics underlying the physiological processes responsible for CCR, the proportion of cows able to conceive and maintain a pregnancy at each breeding, are not well characterized. The objectives of this study were to identify loci, positional candidate genes, and transcription factor binding sites (TFBS) associated with CCR and determine if there was a genetic correlation between CCR and milk production in primiparous Holstein cows. Cows were bred via artificial insemination (AI) at either observed estrus or timed AI and pregnancy status was determined at day 35 post-insemination. Additive, dominant, and recessive efficient mixed model association expedited (EMMAX) models were used in two genome-wide association analyses (GWAA). One GWAA focused on CCR at first service (CCR1) comparing cows that conceived and maintained pregnancy to day 35 after the first AI (n = 494) to those that were open after the first AI (n = 538). The second GWAA investigated loci associated with the number of times bred (TBRD) required for conception in cows that either conceived after the first AI (n = 494) or repeated services (n = 472). RESULTS The CCR1 GWAA identified 123, 198, and 76 loci associated (P < 5 × 10- 08) in additive, dominant, and recessive models, respectively. The TBRD GWAA identified 66, 95, and 33 loci associated (P < 5 × 10- 08) in additive, dominant, and recessive models, respectively. Four of the top five loci were shared in CCR1 and TBRD for each GWAA model. Many of the associated loci harbored positional candidate genes and TFBS with putative functional relevance to fertility. Thirty-six of the loci were validated in previous GWAA studies across multiple breeds. None of the CCR1 or TBRD associated loci were associated with milk production, nor was their significance with phenotypic and genetic correlations to 305-day milk production. CONCLUSIONS The identification and validation of loci, positional candidate genes, and TFBS associated with CCR1 and TBRD can be utilized to improve, and further characterize the processes involved in cattle fertility.
Collapse
Affiliation(s)
- Jennifer N. Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA United States
| | - Erin Clancey
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA United States
| | - Joao G. N. Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO United States
| | - Joseph Dalton
- Department of Animal and Veterinary Science, University of Idaho, Caldwell, ID United States
| | - Gregory W. Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO United States
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO United States
| | - Holly L. Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA United States
| |
Collapse
|
7
|
Maduro MR. A Deeper Look Into the Decidualization of Human Endometrial Stromal Fibroblasts. Reprod Sci 2019; 26:313-314. [PMID: 30764735 DOI: 10.1177/1933719119830167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Research advances on embryonic diapause in mammals. Anim Reprod Sci 2018; 198:1-10. [DOI: 10.1016/j.anireprosci.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
|