Rahimipour M, Jafarabadi M, Salehnia M.
In Vitro Implantation Model Using Human Endometrial SUSD2+ Mesenchymal Stem Cells and Myometrial Smooth Muscle Cells.
CELL JOURNAL 2021;
23:154-163. [PMID:
34096216 PMCID:
PMC8181319 DOI:
10.22074/cellj.2021.6979]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Objective
This study evaluated a novel in vitro implantation model using human endometrial mesenchymal stem cells
(EMSCs), SUSD2+, and myometrial smooth muscle cells (SMCs) that were co-cultured with mouse blastocysts as the
surrogate embryo.
Materials and Methods
In this experimental study, SUSD2+ MSCs were isolated from human endometrial cell
suspensions (ECS) at the fourth passage by magnetic-activated cell sorting. The ECS and SUSD2+ cells were
separately co-cultured with human myometrial muscle cells for five days. After collection of mouse blastocysts, the
embryos were placed on top of the co-cultured cells for 48 hours. The interaction between the embryo and the cultured
cells was assessed morphologically at the histological and ultrastructural levels, and by expression profiles of genes
related to implantation.
Results
Photomicrographs showed that trophoblastic cells grew around the embryonic cells and attached to theECS
and SUSD2+ cells. Ultrastructural observations revealed pinopode and microvilli-like structures on the surfaces of both
the ECS and SUSD2+ cells. Morphologically, the embryos developed to the egg-cylinder stage in both groups. Gene
expression analysis showed no significant differences between the two groups in the presence of an embryo, but an
increased expression of αV was detected in SUSD2+ cells compared to ECS cells in the absence of an embryo.
Conclusion
This study showed that SUSD2+ cells co-cultured with SMCs could interact with mouse embryos. The
co-cultured cells could potentially be used as an implantation model.
Collapse