1
|
Nakamura T, Hongo Y, Harada KI. Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide. Mass Spectrom (Tokyo) 2024; 13:A0144. [PMID: 38435076 PMCID: PMC10904930 DOI: 10.5702/massspectrometry.a0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The collision-induced dissociation (CID) behaviors of protonated molecules of anabaenopeptins, a group of cyanobacterial cyclic peptides, were investigated in detail using liquid chromatography-tandem mass spectrometry. Although anabaenopeptin A and B share a macrocyclic peptide structure, they give strikingly different fragmentation patterns; the former gives a variety of product ions including cleavages in the cyclic peptide structure, which is useful for structural analysis; whereas the latter gives far fewer product ions and no fragmentation in the cyclic moiety. Energy-resolved CID experiments clarified the mechanism behind the striking difference attributable to the difference in exocyclic amino acid residues, Tyr or Arg. The guanidino group in Arg-containing analogue, anabaenopeptin B, should be by far the most preferred protonation site; the proton would be sequestered at the guanidino group in the protonated molecule, with the lack of proton mobility prohibiting opening of the charge-directed fragmentation channels in the cyclic moiety. Enzymatic hydrolysis of the guanidino group to give citrullinated-anabaenopeptin B restored proton mobility. The fragmentation pattern of the citrullinated peptide became almost identical to that of anabaenopeptin A. The observed fragmentation behaviors of these cyclic peptides were consistent with those of linear peptides, which have been well understood based on the mobile proton model.
Collapse
Affiliation(s)
- Takemichi Nakamura
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | - Yayoi Hongo
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | - Ken-ichi Harada
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468–8503, Japan
| |
Collapse
|
2
|
Amin E, Abdel-Bakky MS, Mohammed HA, Hassan MHA. Chemical Profiling and Molecular Docking Study of Agathophora alopecuroides. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111852. [PMID: 36430987 PMCID: PMC9696702 DOI: 10.3390/life12111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Natural products continue to provide inspiring chemical moieties that represent a key stone in the drug discovery process. As per our previous research, the halophyte Agathophora alopecuroides was noted as a potential antidiabetic plant. However, the chemical profiling and highlighting the metabolite(s) responsible for the observed antidiabetic activity still need to be investigated. Accordingly, the present study presents the chemical profiling of this species using the LC-HRMS/MS technique followed by a study of the ligand-protein interaction using the molecular docking method. LC-HRMS/MS results detected twenty-seven compounds in A. alopecuroides extract (AAE) belonging to variable chemical classes. Among the detected compounds, alkaloids, flavonoids, lignans, and iridoids were the most prevailing. In order to highlight the bioactive compounds in AAE, the molecular docking technique was adopted. Results suggested that the two alkaloids (Eburnamonine and Isochondrodendrine) as well as the four flavonoids (Narirutin, Pelargonidin 3-O-rutinoside, Sophora isoflavanone A, and Dracorubin) were responsible for the observed antidiabetic activity. It is worth mentioning that this is the first report for the metabolomic profiling of A. alopecuroides as well as the antidiabetic potential of Isochondrodendrine, Sophora isoflavanone A, and Dracorubin that could be a promising target for an antidiabetic drug.
Collapse
Affiliation(s)
- Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Marwa H. A. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: or ; Tel.: +2-012-7898-2288; Fax: +2-(082)-2317958
| |
Collapse
|
3
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
4
|
Qualitative and Quantitative Comparison of Liquid–Liquid Phase Extraction Using Ethyl Acetate and Liquid–Solid Phase Extraction Using Poly-Benzyl-Resin for Natural Products. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
A key step in the process of isolating microbial natural products is the preparation of an extract from a culture. This step determines which molecules will be available for detection in the subsequent chemical and biological analysis of a biodiscovery pipeline. In the present study we wanted to document potential differences in performance between liquid–liquid extraction using ethyl acetate and liquid–solid extraction using a poly-benzyl-resin. For the comparison of the two extraction protocols, we spiked a culture of Flavobacterium sp. with a diverse selection of natural products of microbial and plant origin to investigate whether the methods were comparable with respect to selectivity. We also investigated the efficiency of the two extraction methods quantitatively, using water spiked with a selection of natural products, and studied the quantitative effect of different pH levels of the aqueous solutions on the extraction yields of the two methods. The same compounds were extracted by the two methods, but the solid-phase extract contained more media components compared with the liquid-phase extract. Quantitatively, the two extraction methods varied in their recovery rates. We conclude that practical aspects could be more important when selecting one of the extraction protocols, as their efficiencies in extracting specific compounds were quite similar.
Collapse
|
5
|
Murray EM, Allen CF, Handy TE, Huffine CA, Craig WR, Seaton SC, Wolfe AL. Development of a Robust and Quantitative High-Throughput Screening Method for Antibiotic Production in Bacterial Libraries. ACS OMEGA 2019; 4:15414-15420. [PMID: 31572841 PMCID: PMC6761686 DOI: 10.1021/acsomega.9b01461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 05/10/2023]
Abstract
Over the past 30 years, there has been a dramatic rise in the number of infections caused by multidrug-resistant bacteria, which have proliferated due to the misuse and overuse of antibiotics. Over this same time period, however, there has also been a decline in the number of antibiotics with novel mechanisms of action coming to market. Therefore, there is a growing need for an increase in the speed at which new antibiotics are discovered and developed. Natural products produced by bacteria have been and continue to be a robust source of novel antibiotics; however, new and complementary methods for screening large bacterial libraries for novel antibiotic production are needed due to the current agar methods being limited in scope, time consuming, and prone to error. Herein, we describe a rapid, robust, and quantitative high-throughput liquid culture screening method for antibiotic production by bacteria. This method has the ability to screen both mono- and coculture mixtures of bacteria in vitro and be adapted to other phenotypic natural product analyses. Over 260 bacterial species were screened in monoculture, and 38 and 34% were found to produce antibiotics capable of inhibition of Staphylococcus aureus or Escherichia coli, respectively, with 8 and 4% being classified as strong producers (≥30% growth inhibition), respectively. Bacteria found to not produce antibiotics in monoculture were also screened in coculture using an adaptation of this method. Of the more than 270 cocultures screened, 14 and 30% were found to produce antibiotics capable of inhibition of S. aureus or E. coli, respectively. Of those bacteria found to produce antibiotics in monoculture, 43 bacteria were subjected to 16S rRNA sequencing and found to be majority Pseudomonas (37%), Serratia (19%), and Bacillus (14%) bacteria, but two novel producers, Herbaspirillum and Kluyvera, were also found.
Collapse
Affiliation(s)
- Elizabeth M. Murray
- Department
of Biology and Department of Chemistry, University of
North Carolina Asheville, One University Heights, Asheville, North Carolina 28804, United States
| | - Catherine F. Allen
- Department
of Biology and Department of Chemistry, University of
North Carolina Asheville, One University Heights, Asheville, North Carolina 28804, United States
| | - Tess E. Handy
- Department
of Biology and Department of Chemistry, University of
North Carolina Asheville, One University Heights, Asheville, North Carolina 28804, United States
| | - Clair A. Huffine
- Department
of Biology and Department of Chemistry, University of
North Carolina Asheville, One University Heights, Asheville, North Carolina 28804, United States
| | - Whitney R. Craig
- Department
of Biology and Department of Chemistry, University of
North Carolina Asheville, One University Heights, Asheville, North Carolina 28804, United States
| | - Sarah C. Seaton
- Indigo Ag, 500 Rutherford Avenue, Boston, Massachusetts 02129, United States
| | - Amanda L. Wolfe
- Department
of Biology and Department of Chemistry, University of
North Carolina Asheville, One University Heights, Asheville, North Carolina 28804, United States
- E-mail:
| |
Collapse
|
6
|
Abstract
The history of drug development has its foundation firmly set in the study of natural remedies used to treat human disease over centuries. Analysis of medicinal plants, bioactive cultures, and increased understanding of micronutrients in the food chain opened the door to the development of purified and defined chemical compounds as dose-controlled medicines. Thus, with the early discovery of cardiotonics in foxglove, salicylic acid in willow bark, morphine in poppies, and penicillin in mold, the pharmaceutical industry was launched. Such natural small molecules served as treatments for disease and ultimately, as pharmacologic tools to enable the understanding of the biochemical pathways and mechanisms of disease. In contrast, modern drug discovery technologies coupled with the powerful tools of biotechnology have prompted drug discovery organizations to focus on target-driven drug discovery at the molecular level by launching high-throughput screening programs using artificial biochemical assays. At a time when the pharmaceutical industry has come under scrutiny for high rates of drug development failure, it is interesting to see that natural products drug discovery has been marginalized in favor of this high-throughput biochemical screening paradigm. If modern drug development is once again to benefit from natural products as a source, then the limitations of artificial biochemical assays as applied to the screening of natural extracts must be realized in order to capitalize on the vast natural molecular diversity and rich ethnobotanic data that has emerged worldwide. Natural compounds can again become central players in the treatment of disease and in the understanding of disease mechanisms.
Collapse
|