1
|
Portocarrero Huang G, Idkowiak-Baldys J, Liebel F, Jones C, Haxaire C, DiNatale L, Bayat A, Glynn JR. L-4-thiazolylalanine (Protinol), a novel non-proteinogenic amino acid, demonstrates epidermal and dermal efficacy with clinically observable benefits. Int J Cosmet Sci 2024; 46:24-38. [PMID: 37562497 DOI: 10.1111/ics.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Facial skin undergoes major structural and functional changes as a result of intrinsic and extrinsic factors. The goal of the current work is to demonstrate L-4-thiazolylalaine (L4, Protinol), a non-proteinogenic amino acid shown to stimulate the production of dermal proteins by fibroblasts, is an alternative efficacious topical ingredient for visible signs of ageing. METHODS In vitro studies using 3D human skin tissue models were performed to show changes in protein and gene expression of key dermal markers in samples treated with 0.3% L4 compared to vehicle control. In vivo evaluation of skin turnover was measured in volunteers after treatment with L4 compared to retinol. Skin biopsies (n = 30) were taken to investigate epidermal and dermal changes in cases treated with L4 and compared to retinol. Finally, a clinical evaluation (n = 28) was conducted to assess the efficacy of L4 over a base formulation using various ageing parameters within a population of women 46-66 years old with mild-to-moderate wrinkles. RESULTS In vitro studies on 3D tissues displayed significant changes in the dermal matrix via an increase in HA and pro-collagen I production and a decrease in the expression of inflammatory genes. In vivo biopsy studies demonstrated that L4 and retinol independently increased epidermal thickness and collagen remodelling significantly more compared with the base formula. Clinical evaluation showed firmer and smoother skin at day 28 post-treatment with L4 over the vehicle control without causing side effects such as redness or irritation. CONCLUSION L4 is a novel, multi-functional ingredient which offers a superior alternative to currently available technologies for improving epidermal and dermal parameters that change during ageing and photodamage.
Collapse
Affiliation(s)
- Gloria Portocarrero Huang
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Jolanta Idkowiak-Baldys
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Frank Liebel
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Constantina Jones
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Coline Haxaire
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Lisa DiNatale
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Ardeshir Bayat
- MRC Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - John R Glynn
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| |
Collapse
|
2
|
Dinan L, Lafont F, Lafont R. The Distribution of Phytoecdysteroids among Terrestrial Vascular Plants: A Comparison of Two Databases and Discussion of the Implications for Plant/Insect Interactions and Plant Protection. PLANTS (BASEL, SWITZERLAND) 2023; 12:776. [PMID: 36840124 PMCID: PMC9967490 DOI: 10.3390/plants12040776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Phytoecdysteroids are a class of plant secondary compounds which are present in a wide diversity of vascular plant species, where they contribute to a reduction in invertebrate predation. Over the past 55 years, a significant body of heterogeneous literature on the presence, identities and/or quantities of ecdysteroids in plant species has accumulated, resulting in the compilation of a first database, the Ecdybase Literature Survey (ELS; 4908 entries, covering 2842 species). A second extensive database on the distribution of ecdysteroids in vascular plants is available as the Exeter Survey (ES; 4540 entries, covering 4155 species), which used standardised extraction and analysis methods to survey seeds/spores. We compare the usefulness of these two databases to provide information on the occurrence of phytoecdysteroids at the order/family levels in relation to the recent molecular classifications of gymnosperms, pteridophytes/lycophytes and angiosperms. The study, in conjunction with the other published literature, provides insights into the distribution of phytoecdysteroids in the plant world, their role in plant protection in nature and their potential future contribution to crop protection. Furthermore, it will assist future investigations in the chemotaxonomy of phytoecdysteroids and other classes of plant secondary compounds.
Collapse
|
3
|
Ghareeb AFA, Schneiders GH, Foutz JC, Milfort MC, Fuller AL, Yuan J, Rekaya R, Aggrey SE. Heat Stress Alters the Effect of Eimeria maxima Infection on Ileal Amino Acids Digestibility and Transporters Expression in Meat-Type Chickens. Animals (Basel) 2022; 12:ani12121554. [PMID: 35739890 PMCID: PMC9219439 DOI: 10.3390/ani12121554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Heat stress (HS) and Eimeria (E.) maxima infection are the most common physical and pathological stressors in chicken houses, and both affect intestinal digestibility and absorption leading to reduction in growth, morbidity, and mortality, causing massive economic losses. This study identifies the impact of each stressor and their combined effects on apparent amino acid digestibility and molecular transporters expression in the ileum of broiler chicken. Heat-stressed chickens showed no change in amino acids digestibility, despite the reduction in feed intake. Combining HS and E. maxima infection modulated the reduction in amino acids digestibility observed in the infected chickens. The expression of the ileal amino acid transporters was severely impacted by E. maxima infection but not by HS. Interestingly, the infected group reared under HS exhibited significantly higher expression levels in all the enterocytic apical and about half of the basolateral amino acid transporters than the infected birds raised in thermoneutral environment. Thus, HS putatively curtailed the maldigestion effects of E. maxima. Abstract Eimeria (E.) maxima invades the midgut of chickens and destroys the intestinal mucosa, impacting nutrient digestibility and absorption. Heat stress (HS) commonly affects the broiler chicken and contributes to inflammation and oxidative stress. We examined the independent and combined effects of HS and E. maxima infection on apparent amino acid ileal digestibility (AID) and mRNA expression of amino acid transporters in broiler chickens (Ross 708). There were four treatment groups: thermoneutral-control (TNc) and infected (TNi), heat-stress control (HSc) and infected (HSi), six replicates of 10 birds/treatment. Ileal content and tissue were sampled at 6 d post infection to determine AID and transporters expression. Surprisingly, the HSi chickens exposed to two critical stressors exhibited normal AID. Only the TNi group displayed reduction in AID. Using TNc as control, the HSc group showed upregulated CAT1, LAT4, TAT1, SNAT1, and SNAT7. The HSi group showed upregulated CAT1 and LAT1, and downregulated b0,+AT, rBAT, SNAT1, and SNAT2. The TNi group showed upregulated CAT1, LAT1, and SNAT1 and downregulated B0AT1, b0,+AT, rBAT, LAT4, and TAT1. The expression of all enterocytic-apical and about half of the basolateral transporters was higher in the HSi group than in the TNi group, indicating that HS can putatively alleviate the E. maxima adverse effect on ileal digestion and absorption.
Collapse
Affiliation(s)
- Ahmed F. A. Ghareeb
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
| | - Gustavo H. Schneiders
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA
| | - James C. Foutz
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), 1110 Airport Pkwy, Gainesville, GA 30501, USA
| | - Marie C. Milfort
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, 425 River Rd, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30602, USA; (A.F.A.G.); (G.H.S.); (J.C.F.); (M.C.M.); (A.L.F.)
- Correspondence: ; Tel.: +1-706-542-1351
| |
Collapse
|
4
|
Cyanotoxins and the Nervous System. Toxins (Basel) 2021; 13:toxins13090660. [PMID: 34564664 PMCID: PMC8472772 DOI: 10.3390/toxins13090660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are capable of producing a wide range of bioactive compounds with many considered to be toxins. Although there are a number of toxicological outcomes with respect to cyanobacterial exposure, this review aims to examine those which affect the central nervous system (CNS) or have neurotoxicological properties. Such exposures can be acute or chronic, and we detail issues concerning CNS entry, detection and remediation. Exposure can occur through a variety of media but, increasingly, exposure through air via inhalation may have greater significance and requires further investigation. Even though cyanobacterial toxins have traditionally been classified based on their primary mode of toxicity, increasing evidence suggests that some also possess neurotoxic properties and include known cyanotoxins and unknown compounds. Furthermore, chronic long-term exposure to these compounds is increasingly being identified as adversely affecting human health.
Collapse
|
5
|
Huang R, Shen K, He Q, Hu Y, Sun C, Guo C, Pan Y. Metabolic Profiling of Urinary Chiral Amino-Containing Biomarkers for Gastric Cancer Using a Sensitive Chiral Chlorine-Labeled Probe by HPLC-MS/MS. J Proteome Res 2021; 20:3952-3962. [PMID: 34229439 DOI: 10.1021/acs.jproteome.1c00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening of characteristic biomarkers from chiral amino-containing metabolites in biological samples is difficult and important for the noninvasive diagnosis of gastric cancer (GC). Here, an enantiomeric pair of chlorine-labeled probes d-BPCl and l-BPCl was synthesized to selectively label d- and l-amino-containing metabolites in biological samples, respectively. Incorrect structural annotations were excluded according to the characteristic 3:1 abundance ratio of natural chlorine isotopes (35Cl and 37Cl) derived from the probes. A sensitive C18 HPLC-QQQ-MS/MS method in combination with the probes was then developed and applied in metabolomic analysis of amino-containing metabolites in urine samples. A total of 161 amino-containing metabolites were rapidly separated and determined, and 28 chiral amino acids and achiral glycine were quantified with good precision and accuracy. A total of 18 differential variables were discriminated by analyzing chiral amino-containing metabolites in urine samples of the GC patient and healthy person using the probe-based HPLC-MS/MS-MRM method combined with the orthogonal partial least squares discriminant analysis and Mann-Whitney U test with false discovery rate correction for multiple hypotheses. A diagnostic regression model including d-isoleucine, d-serine, and β-(pyrazol-1-yl)-l-alanine and age was then constructed with an average prediction correctness of 88.9% in the validation set. This work established a close connection between gastric cancer and chiral amino-containing metabolites. The mass spectrometry data analyzed in the study are publicly available via Mendeley Data (DOI: 10.17632/4bd93j9yrr.1).
Collapse
Affiliation(s)
- Rongrong Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kexin Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
6
|
Joshi J, Saboori-Robat E, Solouki M, Mohsenpour M, Marsolais F. Distribution and possible biosynthetic pathway of non-protein sulfur amino acids in legumes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4115-4121. [PMID: 31231767 DOI: 10.1093/jxb/erz291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Some grain legumes store sulfur in the form of non-protein amino acids in seed. γ-Glutamyl-S-methylcysteine is found in Phaseolus and several Vigna species. γ-Glutamyl-S-ethenylcysteine, an antinutritional compound, is present in Vicia narbonensis. In P. vulgaris, free S-methylcysteine levels are higher at early stages of seed development followed by a decline. γ-Glutamyl-S-methylcysteine accumulates later, in two phases, with a lag during reserve accumulation. The concentration of total S-methylcysteine, quantified after acid hydrolysis, is positively regulated by sulfate nutrition. The levels of both γ-glutamyl-S-methylcysteine and γ-glutamyl-S-ethenylcysteine are modulated in response to changes in seed protein composition. A model is proposed whereby the majority of γ-glutamyl-S-methylcysteine in P. vulgaris is synthesized via the intermediate S-methylhomoglutathione. Knowledge of the biosynthesis of non-protein sulfur amino acids is required for metabolic engineering approaches, in conjunction with manipulation of the protein sink, to increase the concentration of nutritionally essential methionine and cysteine. This would improve protein quality of some important legume crops.
Collapse
Affiliation(s)
- Jaya Joshi
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Elham Saboori-Robat
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Motahhareh Mohsenpour
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Fazary AE, Bani-Fwaz MZ, Fawy KF, Sahlabji T, Awwad NS, Abd-Rabboh HS. Norleucine metal complexes: comments on their equilibrium constants data. REV INORG CHEM 2018; 38:43-48. [DOI: 10.1515/revic-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This discussion article summarizes all protonation and stability constants data found in the literature for nonprotein l-norleucine amino acid and its metal complexes. The results of approximately 18 published articles discussing the protonation and complexation equilibria of l-norleucine using different techniques and software were presented to comprehend the data on the grounds of modern aspects of l-norleucine complex chemistry.
Collapse
Affiliation(s)
- Ahmed E. Fazary
- Chemistry Department , Faculty of Science, King Khalid University , Abha 9004 , Kingdom of Saudi Arabia
- Applied Research Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) , 51 Wezaret El-Zeraa St. , Agouza, Giza , Egypt , Phone: +966-7-241-8343, Fax: +966-7-2417637, e-mail:
| | - Mutasem Z. Bani-Fwaz
- Chemistry Department , Faculty of Science, King Khalid University , Abha 9004 , Kingdom of Saudi Arabia
| | - Khaled F. Fawy
- Chemistry Department , Faculty of Science, King Khalid University , Abha 9004 , Kingdom of Saudi Arabia
| | - Taher Sahlabji
- Chemistry Department , Faculty of Science, King Khalid University , Abha 9004 , Kingdom of Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department , Faculty of Science, King Khalid University , Abha 9004 , Kingdom of Saudi Arabia
| | - Hisham S.M. Abd-Rabboh
- Chemistry Department , Faculty of Science, King Khalid University , Abha 9004 , Kingdom of Saudi Arabia
- Department of Chemistry , Faculty of Science, Ain Shams University , Cairo 11566 , Egypt
| |
Collapse
|
8
|
Nunn PB, Bell EA, Watson AA, Nash RJ. Toxicity of Non-protein Amino Acids to Humans and Domestic Animals. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Non-protein amino acids are common in plants and are present in widely consumed animal feeds and human foods such as alfalfa ( Medicago sativa), which contains canavanine, and lentil ( Lens culinaris), which contains homoarginine. Some occur in wild species that are inadvertently harvested with crop species. Some nonprotein amino acids and metabolites can be toxic to humans, e.g. Lathyrus species contain a neurotoxic oxalyl-amino acid. Some potential toxins may be passed along a food chain via animal intermediates. The increased interest in herbal medicines in the Western countries will increase exposure to such compounds.
Collapse
Affiliation(s)
- Peter B. Nunn
- School of Pharmacy and Biomedical Sciences, St Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - E. Arthur Bell
- Formerly at the School of Biomedical Sciences, King's College London, WC2R 2LS, England, UK
| | - Alison A. Watson
- Phytoquest Limited, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Robert J. Nash
- Phytoquest Limited, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|