1
|
Kiran NR, Narayanan AK, Mohapatra S, Gupta P, Nagegowda DA. Analysis of root volatiles and functional characterization of a root-specific germacrene A synthase in Artemisia pallens. PLANTA 2024; 259:58. [PMID: 38308700 DOI: 10.1007/s00425-024-04334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 02/05/2024]
Abstract
MAIN CONCLUSION The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes β-elemene, neryl isovalerate, β-selinene, and α-selinene, and trace amounts of monoterpenes β-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of β-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that β-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.
Collapse
Affiliation(s)
- N R Kiran
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Ananth Krishna Narayanan
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumyajit Mohapatra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Shinjyo Y, Midorikawa N, Matsumoto T, Sugaya Y, Ozawa Y, Oana A, Horie C, Yoshikawa H, Takahashi Y, Hasegawa T, Asai K. Analysis of cell death in Bacillus subtilis caused by sesquiterpenes from Chrysopogon zizanioides (L.) Roberty. J GEN APPL MICROBIOL 2022; 68:62-70. [PMID: 35418537 DOI: 10.2323/jgam.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recently, the antibacterial effects of essential oils have been investigated in addition to their therapeutic purposes. Owing to their hydrophobic nature, they are thought to perturb the integrity of the bacterial cell membrane, leading to cell death. Against such antibiotic challenges, bacteria develop mechanisms for cell envelope stress responses (CESR). In Bacillus subtilis, a gram-positive sporulating soil bacterium, the extracytoplasmic function (ECF) sigma factor-mediated response system plays a pivotal role in CESR. Among them, σM is strongly involved in response to cell envelope stress, including a shortage of available bactoprenol. Vetiver essential oil, a product of Chrysopogon zizanioides (L.) Roberty root, is also known to possess bactericidal activity. σM was exclusively and strongly induced when the cells were exposed to Vetiver extract, and depletion of multi-ECF sigma factors (ΔsigM, ΔsigW, ΔsigX, and ΔsigV) enhanced sensitivity to it. From this quadruple mutant strain, the suppressor strains, which restored resistance to the bactericidal activity of Vetiver extract, emerged, although attempts to obtain resistant strains from the wild type did not succeed. Whole-genome resequencing of the suppressor strains and genetic analysis revealed inactivation of xseB or pnpA, which code for exodeoxyribonuclease or polynucleotide phosphorylase, respectively. This allowed the quadruple mutant strain to escape from cell death caused by Vetiver extract. Composition analysis suggested that the sesquiterpene, khusimol, might contribute to the bactericidal activity of the Vetiver extract.
Collapse
Affiliation(s)
- Yu Shinjyo
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Naoya Midorikawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture
| | - Yuki Sugaya
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yoshiki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Ayumi Oana
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Chiaki Horie
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture.,Department of Bioscience, Tokyo University of Agriculture
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Toshio Hasegawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University
| | - Kei Asai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University.,Department of Bioscience, Tokyo University of Agriculture
| |
Collapse
|
3
|
Engel P. Applicability of traditional storage methods in Indonesia for today’s conservation practice. IFLA JOURNAL-INTERNATIONAL FEDERATION OF LIBRARY ASSOCIATIONS 2021. [DOI: 10.1177/03400352211023077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This contribution aims to distil the experience from several conservation projects in Java, Indonesia, into a summary of methods in an attempt to arrive at some suggestions for best practice for the preservation of cultural heritage items in a tropical country. The related projects concerned a museum of contemporary art, traditional puppet theatre materials, a museum of traditional art and an archive.
Collapse
Affiliation(s)
- Patricia Engel
- European Research Centre for Book and Paper Conservation-Restoration, Zentrum für Kulturgüterschutz, Danube University Krems, Austria
| |
Collapse
|
4
|
Grover M, Behl T, Virmani T, Bhatia S, Al-Harrasi A, Aleya L. Chrysopogon zizanioides-a review on its pharmacognosy, chemical composition and pharmacological activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44667-44692. [PMID: 34215988 DOI: 10.1007/s11356-021-15145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Vetiver is a traditional plant with versatile applications in medicine, aroma, commerce, environmental-protection, and agriculture. This review was designed to compile all the latest information on phytochemistry, pharmacology, and traditional uses of C. zizanioides. All the information related to this plant was gathered from several authentic sites, using keywords like Chrysopogon zizanioides, Vetiveria zizanioides, Khus, and Khas-Khas. The included resources were journaled articles, book chapters, books, Ayurvedic Pharmacopoeias, and Ayurvedic Formulary of India, from science direct, PubMed, research gate etc. All the necessary, relevant, authentic, and updated information were tried to inculcate in the manuscript. The literature was collected via online sites like Pub med, Scopus, and Science direct as well. During compilation, it observed that many traditional utilities of vetiver got their authentication when tested using different disease-based pharmacological models taking various extracts of roots, leaves, and root oil as test samples. However, systematic studies for isolation of active constituents and establishing their mechanism of action are still required to be validated. On the other hand, the development of novel and robust techniques needed for oil extraction can further enhance the exploration of biological utilities faster. Moreover, the cultivators and harvesters must address carefully to prevent the linked drawback of soil erosion.
Collapse
Affiliation(s)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
5
|
Lunz K, Stappen I. Back to the Roots-An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils. Molecules 2021; 26:3155. [PMID: 34070487 PMCID: PMC8197530 DOI: 10.3390/molecules26113155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.
Collapse
Affiliation(s)
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
Sivakumar L, Chellappan DR, Sriramavaratharajan V, Murugan R. Root essential oil of Chrysopogon zizanioides relaxes rat isolated thoracic aorta - an ex vivo approach. ACTA ACUST UNITED AC 2020; 76:161-168. [PMID: 33048838 DOI: 10.1515/znc-2020-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
Root of Chrysopogon zizanioides (L.) Roberty has been used in Siddha system of medicine to treat hypertension. The present study was therefore to investigate the vasorelaxation effect of root essential oil of C. zizanioides using rat isolated thoracic aortic rings. Chemical characterization of root essential oil was carried out using Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). Essential oil nanoemulsion (EONE) was prepared and characterized. Vasorelaxant effect of EONE in endothelium-intact aortic rings precontracted with phenylephrine (PE) (1 µM) or KCl (80 mM) was investigated. Role of Ca2+, nitric oxide and K+ channels in precontracted aortic rings were investigated to elucidate the mechanism of action of the essential oil. Further, the role of muscarinic and prostacyclin receptors in EONE induced relaxation was studied. The EONE significantly induced relaxation (Emax 77.1 ± 4.87%) in PE precontracted aortic rings. The nitric oxide synthase, and cyclooxygenase inhibitors and potassium channel blockers have not significantly inhibited the vasorelaxation induced by EONE. However, EONE induced relaxation in precontracted endothelium-intact aortic rings was significantly inhibited by muscarinic receptor and calcium channel. The root essential oil of C. zizanioides possesses vasorelaxant effect through muscarinic pathway as well as acts as calcium channel blocker.
Collapse
Affiliation(s)
- Lekha Sivakumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613 401, Tamil Nadu, India
| | - David Raj Chellappan
- Central Animal Facility, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613 401, Tamil Nadu, India
| | - Venkatraman Sriramavaratharajan
- Central Animal Facility, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613 401, Tamil Nadu, India
| | - Ramar Murugan
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi626 124, Tamil Nadu, India
| |
Collapse
|
7
|
Chemical Composition, Antioxidant, and Antimicrobial Activities of Vetiveria zizanioides (L.) Nash Essential Oil Extracted by Carbon Dioxide Expanded Ethanol. Molecules 2019; 24:molecules24101897. [PMID: 31108854 PMCID: PMC6572508 DOI: 10.3390/molecules24101897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
In the present study, the composition of essential oil isolated from the roots of Vetiveria zizanioides (L.) Nash, harvested in China, was studied, along with the bioactivities. A green novel method using an eco-friendly solvent, CO2-pressurized ethanol, or carbon dioxide expanded ethanol (CXE) was employed to isolate the essential oil from the root of Vetiveria zizanioides (L.) Nash with the purpose of replacing the traditional method and supercritical fluid extraction (SFE). After investigating the major operating factors of CXE, the optimal conditions were obtained as follows: 8.4 MPa, 50 °C, 5 mL/min ethanol, and 0.22 mole fraction of CO2, presenting an extraction oil that ranged from 5.12% to 7.42%, higher than that of hydrodistillation (HD) or indirect vapor distillation (IVD). The Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that three major components, including valerenol (18.48%), valerenal (10.21%), and β-Cadinene (6.23%), are found in CXE oil, while a total of 23 components were identified, 48 components less than using conventional hydrodistillation. Furthermore, the antimicrobial activities of root oils were evaluated by the microdilution method, which showed that CXE oil exhibited an ability against Gram-positive bacteria, especially Staphylococcus aureus, approximately equivalent to traditional samples. Additionally, the DPPH free radical scavenging assay demonstrated that the antioxidant abilities of root oils were sorted in the descending order: IVD > HD > CXE > SFE. In conclusion, after a comprehensive comparison with the conventional methods, the CXE-related technique might be a promising green manufacturing pattern for the production of quality vetiver oil, due to the modification of ethanol by the variable addition of non-polar compressible CO2, ultimately resulting in a prominent dissolving capability for the extraction of vetiver solutes.
Collapse
|