1
|
Gopi P, Singh S, Islam MM, Yadav A, Gupta N, Pandya P. Thermodynamic and structural profiles of multi-target binding of vinblastine in solution. J Mol Recognit 2022; 35:e2989. [PMID: 36054496 DOI: 10.1002/jmr.2989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023]
Abstract
Structural information about drug-receptor interactions is paramount in drug discovery and subsequent optimization processes. Drugs can bind to multiple potential targets as they contain common chemical entities in their structures. Understanding the details of such interactions offer possibilities for repurposing and developing potent inhibitors of disease pathways. Vinblastine (VLB) is a potent anticancer molecule showing multiple receptor interactions with different affinities and degrees of structural perturbations. We have investigated the multi-target binding profile of VLB with DNA and human serum albumin (HSA) in a dynamic physiological environment using spectroscopic, molecular dynamics simulations, and quantum mechanical calculations to evaluate the structural features, mode, ligand and receptor flexibility, and energetics of complexation. These results confirm that VLB prefers to bind in the major groove of DNA with some inclination toward Thymidine residue and the TR-5 binding site in HSA with its catharanthine half making important contacts with both the receptors. Spectroscopic investigation at multiple temperatures has also proved that VLB binding is entropy driven indicating the major groove and TR-5 binding site of interaction. Finally, the overall binding is facilitated by van der Waals contacts and a few conventional H-bonds. VLB portrays reasonable conformational diversity on binding with multiple receptors.
Collapse
Affiliation(s)
- Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Uttar Pradesh, Noida, India
| | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University, Uttar Pradesh, Noida, India
| | | | - Akankasha Yadav
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Neelima Gupta
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Uttar Pradesh, Noida, India
| |
Collapse
|
2
|
Raza A, Mahmood R, Habib S, Talha M, Khan S, Hashmi MA, Mohammad T, Ali A. Fructosylation of human insulin causes AGEs formation, structural perturbations and morphological changes: an in silico and multispectroscopic study. J Biomol Struct Dyn 2022:1-13. [PMID: 35869652 DOI: 10.1080/07391102.2022.2098820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ali Raza
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Talha
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shifa Khan
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
3
|
Bhattacharjee P, Sarkar S, Shmatova OI, Nenajdenko VG, Pandya P, Bhadra K. Synthetic carboline compounds targeting protein: biophysical and biological perspective. J Biomol Struct Dyn 2020; 39:3703-3720. [PMID: 32410501 DOI: 10.1080/07391102.2020.1769732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pictet-Spengler cyclization method has been adopted for the synthesis of three carboline derived compounds: two compounds with tetrahydro gama- and beta-having CF3 group and amino alkyl chain at delta and alpha position, respectively, and another with guanidine alkyl chain at alpha-position. Structure-activity relationship of the analogues with human serum albumin was studied by fluorescence and Fourier-transform infrared spectroscopy followed by molecular docking. The data showed maximum affinity of human serum albumin with comp7 (S0-820) followed by comp3 (S0-1040) and least with comp1 (S0-728). The compounds were tested for cytotoxic potencies. Comp3, showed maximum cytotoxicity with GI50 6.2 µM, against HCT-116, followed by comp7, and poor cytotoxicity with comp1. Comp3 and 7 induced oxidative stress mediated autophagy led programmed cell death in HCT-116. Furthermore, the compounds effectively inhibit DNA topoisomerase I activity and showed anti-inflammatory actions. In vivo studies regarding therapeutic protective action of Comp3, as a representative carboline analogue, against colon toxicant, 1,2-dimethylhydrazine dihydrochloride (DMH), showed the efficacy of the compound against organ toxicity. The existing studies on biological evaluation showed that these synthetic compounds may have a major role as anticancer agents having myriad of proven therapeutic applications. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sarita Sarkar
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| | - Olga I Shmatova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| |
Collapse
|
4
|
Ghosh T, Sarkar S, Bhattacharjee P, Jana GC, Hossain M, Pandya P, Bhadra K. In vitro relationship between serum protein binding to beta-carboline alkaloids: a comparative cytotoxic, spectroscopic and calorimetric assays. J Biomol Struct Dyn 2019; 38:1103-1118. [PMID: 30909826 DOI: 10.1080/07391102.2019.1595727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The work highlighted interaction of harmalol, harmaline and harmine with human serum albumin by biophysical and biochemical assays. Presence of serum protein in the media negatively affects the cytotoxicity of the alkaloids. MTT assay indicates concentration-dependent growth inhibitory effect of the alkaloids on A375, MDA-MB-231, HeLa, A549, ACHN and HepG2 cell, having maximum cytotoxicity with GI50 value of 6.5 μM on ACHN by harmine in 1% of fetal bovine serum. Detail cytotoxic studies on ACHN cell by harmine, the most cytotoxic among the three, reveal nucleosomal fragmentation, formation of comet tail, generation of reactive oxygen species, decreased mitochondrial membrane potential, up regulation of p53, caspase 3 and significant increase in G2/M population that made the cancer cells prone to apoptosis. Furthermore, the findings unequivocally pointed out that harmine binds strongly to the protein with a binding constant of 5.53 × 104 M-1 followed by harmaline and least with harmalol. Thermodynamic results revealed enthalpy dominated, entropy favored, 1:1 binding. Molecular docking and circular dichroism suggested changed conformation of protein by partial unfolding on complexation. Further supported by infrared analysis where protein secondary structure was altered with a major decrease of α-helix from 53.68% (free protein) to 8-11% and change in β-sheet from 25.31% (free protein) to 1-6% upon binding, inducing partial protein destabilization. Site markers demonstrated site I (subdomain IIA) binding of the alkaloids to the protein. The results serve as data for the future development of serum protein-based targeted drugs. AbbreviationsCD: circular dichroism; FBS: fetal bovine serumFRETForster resonance energy transferFTIRFourier transform infraredHSAhuman serum albumin; ROS: reactive oxygen speciesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| | - Sarita Sarkar
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Bose Institute, Kolkata, India
| | | | - Gopal Chandra Jana
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Vidyasagar University, Midnapore, West Bengal, India
| | - Maidul Hossain
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Vidyasagar University, Midnapore, West Bengal, India
| | - Prateek Pandya
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| |
Collapse
|
5
|
Zhen JP, Wei XC, Shi WJ, Huang ZY, Jin B, Zhou YK. Cooperativity effect involving drug-DNA/RNA intermolecular interaction: A B3LYP-D3 and MP2 theoretical investigation on ketoprofen⋯cytosine⋯H 2O system. J Biomol Struct Dyn 2017; 36:3587-3606. [PMID: 29092677 DOI: 10.1080/07391102.2017.1400469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H2O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H2O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H2O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H2O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.
Collapse
Affiliation(s)
- Jun-Ping Zhen
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Xiao-Chun Wei
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Wen-Jing Shi
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Zhu-Yuan Huang
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Bo Jin
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Yu-Kun Zhou
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| |
Collapse
|