1
|
Mayrhofer BF, Iantas J, Noriler SA, Ponomareva LV, Thorson JS, Rohr J, Shaaban KA, Glienke C. Highly diverse endophytic fungi from Serra do Amolar-Pantanal (Brazil) producing bioactive secondary metabolites against phytopathogens. Front Microbiol 2024; 15:1501182. [PMID: 39777144 PMCID: PMC11703833 DOI: 10.3389/fmicb.2024.1501182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The exploration of new bioactive compounds for agricultural applications is critical for sustainable development. Endophytic fungi, particularly those from underexplored biomes in Brazil, represent a promising source of natural compounds. This study focused on isolation and bioprospecting endophytic fungi from the medicinal plant Vochysia divergens (Pohl), grown in Serra do Amolar (Brazilian Pantanal Biome), with an additional emphasis on conserving microbial biodiversity. Methods and results Leaves and petioles were collected from 18 V. divergens specimens, from which 293 endophytes were isolated and grouped by morphological characteristics into 91 phenotypes. One representative of each phenotype was selected for secondary metabolite extraction and taxonomic identification. Fungi belonging to 27 families and 32 different genera were identified, with Diaporthe, Phyllosticta, and Pseudofusicoccum as the most predominant. We also introduce and describe a new endophytic species, Diaporthe amolarensis. Multiple extracts inhibited mycelial growth of the phytopathogenic fungus Colletotrichum abscissum, with a superior effect compared to the fungicide control. These extracts were produced by Diaporthe amolarensis, Xylaria arbuscula, and Nemania primolutea. Additionally, the extract from one X. arbuscula isolate displayed moderate activity against the phytopathogen Phyllosticta citricarpa. HPLC-UV and HPLC-MS analyses of these most inhibitory extracts revealed natural products with beneficial potential that need characterization and to have their modes of action elucidated. Discussion Finally, a very important contribution of this study was the ex situ conservation of the biodiversity of the Serra do Amolar, allowing future studies and biotechnological applications involving endophytes from this region.
Collapse
Affiliation(s)
- Bárbara Fanaya Mayrhofer
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Curitiba, Paraná, Brazil
| | - Jucélia Iantas
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Curitiba, Paraná, Brazil
| | - Sandriele Aparecida Noriler
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Curitiba, Paraná, Brazil
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Chirlei Glienke
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Curitiba, Paraná, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Curitiba, Paraná, Brazil
| |
Collapse
|
2
|
Pellissier L, Gaudry A, Vilette S, Lecoultre N, Rutz A, Allard PM, Marcourt L, Ferreira Queiroz E, Chave J, Eparvier V, Stien D, Gindro K, Wolfender JL. Comparative metabolomic study of fungal foliar endophytes and their long-lived host Astrocaryum sciophilum: a model for exploring the chemodiversity of host-microbe interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1278745. [PMID: 38186589 PMCID: PMC10768666 DOI: 10.3389/fpls.2023.1278745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Introduction In contrast to the dynamics observed in plant/pathogen interactions, endophytic fungi have the capacity to establish enduring associations within their hosts, leading to the development of a mutually beneficial relationship that relies on specialized chemical interactions. Research indicates that the presence of endophytic fungi has the ability to significantly modify the chemical makeup of the host organism. Our hypothesis proposes the existence of a reciprocal exchange of chemical signals between plants and fungi, facilitated by specialized chemical processes that could potentially manifest within the tissues of the host. This research aimed to precisely quantify the portion of the cumulative fungal endophytic community's metabolome detectable within host leaves, and tentatively evaluate its relevance to the host-endophyte interplay. The understory palm Astrocaryum sciophilum (Miq.) Pulle was used as a interesting host plant because of its notable resilience and prolonged life cycle, in a tropical ecosystem. Method Using advanced metabolome characterization, including UHPLC-HRMS/MS and molecular networking, the study explored enriched metabolomes of both host leaves and 15 endophytic fungi. The intention was to capture a metabolomic "snapshot" of both host and endophytic community, to achieve a thorough and detailed analysis. Results and discussion This approach yielded an extended MS-based molecular network, integrating diverse metadata for identifying host- and endophyte-derived metabolites. The exploration of such data (>24000 features in positive ionization mode) enabled effective metabolome comparison, yielding insights into cultivable endophyte chemodiversity and occurrence of common metabolites between the holobiont and its fungal communities. Surprisingly, a minor subset of features overlapped between host leaf and fungal samples despite significant plant metabolome enrichment. This indicated that fungal metabolic signatures produced in vitro remain sparingly detectable in the leaf. Several classes of primary metabolites were possibly shared. Specific fungal metabolites and/or compounds of their chemical classes were only occasionally discernible in the leaf, highlighting endophytes partial contribution to the overall holobiont metabolome. To our knowledge, the metabolomic study of a plant host and its microbiome has rarely been performed in such a comprehensive manner. The general analytical strategy proposed in this paper seems well-adapted for any study in the field of microbial- or microbiome-related MS and can be applied to most host-microbe interactions.
Collapse
Affiliation(s)
- Leonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Salomé Vilette
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Jérôme Chave
- Laboratoire Evolution et diversité Biologique (Unité Mixte de Recherche (UMR) 5174), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III (UT3), Institut de Recherche pour le Développement (IRD), Université Toulouse 3, Toulouse, France
| | - Véronique Eparvier
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Didier Stien
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biodiversité et Biotechnologie Microbiennes, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| |
Collapse
|
3
|
Garcia-Aroca T, Price PP, Tomaso-Peterson M, Allen TW, Wilkerson TH, Spurlock TN, Faske TR, Bluhm B, Conner K, Sikora E, Guyer R, Kelly H, Squiers BM, Doyle VP. Xylaria necrophora, sp. nov., is an emerging root-associated pathogen responsible for taproot decline of soybean in the southern United States. Mycologia 2021; 113:326-347. [PMID: 33555993 DOI: 10.1080/00275514.2020.1846965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
Taproot decline (TRD) is a disease of soybean that has been reported recently from the southern United States (U.S.). Symptoms of TRD include foliar interveinal chlorosis followed by necrosis. Darkened, charcoal-colored areas of thin stromatic tissue are evident on the taproot and lateral roots along with areas of necrosis within the root and white mycelia within the pith. Upright stromata typical of Xylaria can be observed on crop debris and emerging from infested roots in fields where taproot decline is present, but these have not been determined to contain fertile perithecia. Symptomatic plant material was collected across the known range of the disease in the southern U.S., and the causal agent was isolated from roots. Four loci, ⍺-actin (ACT), β-tubulin (TUB2), the nuclear rDNA internal transcribed spacers (nrITS), and the RNA polymerase subunit II (RPB2), were sequenced from representative isolates. Both maximum likelihood and Bayesian phylogenetic analyses showed consistent clustering of representative TRD isolates in a highly supported clade within the Xylaria arbuscula species complex in the "HY" clade of the family Xylariaceae, distinct from any previously described taxa. In order to understand the origin of this pathogen, we sequenced herbarium specimens previously determined to be "Xylaria arbuscula" based on morphology and xylariaceous endophytes collected in the southern U.S. Some historical specimens from U.S. herbaria collected in the southern region as saprophytes as well as a single specimen from Martinique clustered within the "TRD" clade in phylogenetic analyses, suggesting a possible shift in lifestyle. The remaining specimens that clustered within the family Xylariaceae, but outside of the "TRD" clade, are reported. Both morphological evidence and molecular evidence indicate that the TRD pathogen is a novel species, which is described as Xylaria necrophora.
Collapse
Affiliation(s)
- Teddy Garcia-Aroca
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Paul P Price
- LSU AgCenter, Macon Ridge Research Station, Winnsboro, Louisiana 71295
| | - Maria Tomaso-Peterson
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762
| | - Tom W Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776
| | - Tessie H Wilkerson
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776
| | - Terry N Spurlock
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture Cooperative Extension Service, Lonoke, Arkansas 72086
| | - Travis R Faske
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture Cooperative Extension Service, Lonoke, Arkansas 72086
| | - Burt Bluhm
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas 72701
| | - Kassie Conner
- Alabama Cooperative Extension System, Auburn University, Auburn, Alabama 36849
| | - Edward Sikora
- Alabama Cooperative Extension System, Auburn University, Auburn, Alabama 36849
| | - Rachel Guyer
- Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson, Tennessee 38301
| | - Heather Kelly
- Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson, Tennessee 38301
| | - Brooklyn M Squiers
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|