1
|
Xiong Z, Li Y, Zhang X, Zhang S, Li K, Zheng N, Zhao S, Wang J. Effects of biochanin A on lactational performance, nitrogen metabolism, and blood metabolites in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:441-449. [PMID: 39309972 PMCID: PMC11416632 DOI: 10.1016/j.aninu.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
Optimizing nitrogen utilization efficiency and mitigating nitrogen losses in cows plays a pivotal role in fostering economic sustainability within contemporary agricultural systems. Biochanin A (BCA), a natural component in red clover, has the potential to improve nitrogen metabolism in dairy cows. The primary objective of this study was to probe the impact of biochanin A supplementation on lactational performance, nitrogen metabolism, and blood metabolites in dairy cows. A complete randomized block design experiment was conducted over 28 d, involving 36 multiparous Holstein cows (comparable milk yield = 37.1 ± 2.90 kg, BW = 642 ± 70.0 kg, days in milk = 92 ± 8.0 d, and parity = 2.4 ± 0.50), which were allocated to three treatment groups: the Control group (with 0 g/d BCA), the Low group (with 10 g/d per cow BCA), and the High group (with 40 g/d per cow BCA). Biochanin A supplementation improved the lactational performance of cows by increasing milk yield by 6.3% (P = 0.007) and feed efficiency by 12.7% (P = 0.009). Total intestinal apparent digestibility was unaffected by BCA supplementation (P > 0.05), but microbial nitrogen was increased by 30.0% (P = 0.002) for promoting nitrogen utilization efficiency by 20.7% (P = 0.004). Milk competent yields (protein, lactose, and non-fat milk solid) were increased with increasing BCA supplementation (P < 0.05). Urea nitrogen levels in plasma and milk were both decreased by BCA supplementation (P < 0.05). Blood routine parameters and plasma biochemical parameters both received no effect by BCA supplementation (P > 0.05). BCA did not affect body health of dairy cows. Additionally, none of the plasma endocrine hormones were affected (P > 0.05). A total of 95 significantly different metabolites were screened from the plasma metabolites of cows in the BCA-added and non-added groups. After performing an enrichment analysis of the metabolic pathways associated with the different metabolites, six specific pathways were identified: bile acid biosynthesis, aspartate metabolism, pyrimidine metabolism, arginine and proline metabolism, the urea cycle, and ammonia recycling. The inclusion of BCA is suggested to enhance milk yield and modulate nitrogen metabolism by influencing relevant metabolites within the metabolic pathways.
Collapse
Affiliation(s)
- Zhanbo Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kexin Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Fujimatsu T, Tsuno Y, Oonishi A, Yano T, Maeda H, Endo K, Yazaki K, Sugiyama A. O-Methylated Isoflavones Induce nod Genes of Mesorhizobium ciceri and Pratensein Promotes Nodulation in Chickpea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18465-18477. [PMID: 39110140 DOI: 10.1021/acs.jafc.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Legume plants form symbiotic relationships with rhizobia, which allow plants to utilize atmospheric nitrogen as a nutrient. This symbiosis is initiated by secretion of specific signaling metabolites from the roots, which induce the expression of nod genes in rhizobia. These metabolites are called nod gene inducers (NGIs), and various flavonoids have been found to act as NGIs. However, NGIs of chickpea, the second major pulse crop, remain elusive. We conducted untargeted metabolome analysis of chickpea root exudates to explore metabolites with increased secretion under nitrogen deficiency. Principal component (PC) analysis showed a clear difference between nitrogen deficiency and control, with PC1 alone accounting for 37.5% of the variance. The intensity of two features with the highest PC1 loading values significantly increased under nitrogen deficiency; two prominent peaks were identified as O-methylated isoflavones, pratensein and biochanin A. RNA-seq analysis showed that they induce nodABC gene expression in the Mesorhizobium ciceri symbiont, suggesting that pratensein and biochanin A are chickpea NGIs. Pratensein applied concurrently with M. ciceri at sowing promoted chickpea nodulation. These results demonstrate that pratensein and biochanin A are chickpea NGIs, and pratensein can be useful for increasing nodulation efficiency in chickpea production.
Collapse
Affiliation(s)
- Teruhisa Fujimatsu
- Biological Science Research Laboratories, Kao Corporation, 2606 Ichikai, Haga, Tochigi 321-3497, Japan
| | - Yuhei Tsuno
- Biological Science Research Laboratories, Kao Corporation, 2606 Ichikai, Haga, Tochigi 321-3497, Japan
| | - Atsuki Oonishi
- Biological Science Research Laboratories, Kao Corporation, 2606 Ichikai, Haga, Tochigi 321-3497, Japan
| | - Takehisa Yano
- Safety Science Research Laboratories, Kao Corporation, 2606 Ichikai, Haga, Tochigi 321-3497, Japan
| | - Haruka Maeda
- Biological Science Research Laboratories, Kao Corporation, 2606 Ichikai, Haga, Tochigi 321-3497, Japan
| | - Keiji Endo
- Biological Science Research Laboratories, Kao Corporation, 2606 Ichikai, Haga, Tochigi 321-3497, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
3
|
Xu Q, Li Y, Du W, Zheng N, Wang J, Zhao S. Effect of dietary biochanin A on lactation performance, antioxidant capacity, rumen fermentation and rumen microbiome of dairy goat. Front Microbiol 2023; 14:1101849. [PMID: 36814572 PMCID: PMC9939525 DOI: 10.3389/fmicb.2023.1101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Biochanin A (BCA), an isoflavone phytoestrogen, is a secondary metabolite produced mainly in leguminous plants. The objective of this study was to evaluate the effect of BCA on lactation performance, nitrogen metabolism, and the health of dairy goat. Thirty mid-lactation Saanen dairy goats were divided into three groups randomly: control, 2 g/d BCA group, and 6 g/d BCA group. After 36 days of feeding, 30 dairy goats were transferred to individual metabolic cages. Subsequently, milk yield, feed intake, total feces, and urine excretion were recorded and samples were collected continuously for 3 days. Blood and ruminal fluid samples were collected over the subsequent 4 days. Milk yield, milk protein, fat content, and the feed conversion ratio of dairy goat were significantly increased by the BCA treatment. The levels of serum 17β-estradiol, growth hormone, insulin-like growth factor 1, glutathione peroxidase activity, and total antioxidant capacity were also increased significantly by BCA, indicating that BCA enhanced the antioxidant capacity of dairy goat. Amino acid degradation was significantly inhibited, while the ammonia nitrogen content was reduced significantly by BCA. Total volatile fatty acids was significantly increased by BCA supplementation. In addition, the relative abundance of Verrucomicrobiota was decreased significantly. However, the growth of nitrogen metabolism and cellulolytic bacteria was significantly increased under BCA treatment, including Prevotella sp., Treponema sp., Ruminococcus flavefaciens, and Ruminobacter amylophilus. In conclusion, supplementation with BCA improved the milk production performance, nitrogen metabolism, rumen fermentation and antioxidant capacity, and regulated the rumen microbiome of dairy goat.
Collapse
Affiliation(s)
- Qingbiao Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjuan Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jiaqi Wang,
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Shengguo Zhao,
| |
Collapse
|
4
|
Krusinski L, Maciel ICDF, Sergin S, Goeden T, Ali H, Kesamneni S, Jambunathan V, Cassida KA, Singh S, Medina-Meza IG, Rowntree JE, Fenton JI. Evaluation of fatty acid and antioxidant variation in a complex pasture system as compared to standard cattle feed in the Great Lakes region. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.945080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the demand for grass-fed ruminant products keeps increasing, more data are needed to assess the nutritional value of feedstuffs, especially pastures. In addition, global climate change adds another challenge to the management of grasslands with projections of changing temperature and precipitation patterns. Consequently, the variations in bioactive compounds such as fatty acids and antioxidants in feeds will be harder to predict. Therefore, it is critical to report region and time-specific results of the nutritional value of feeds intended for ruminant nutrition. The objectives of this study were to compare the antioxidant and fatty acid content of commonly used feedstuffs including a complex pasture mixture from the Great Lakes Region and a traditional grain-based diet, and to assess the variations of these bioactive compounds in the pasture over the course of two grazing seasons. Weather parameters including temperature and rainfall were recorded for the length of the study. Feed samples were collected between June and September 2019 and 2020 and analyzed for nutrient composition, chlorophyll A and B, carotenoids, and total phenols. Fatty acids were analyzed by GC-MS. Correlations were reported to analyze the relationship between individual plant species, antioxidants, and fatty acids. We observed higher antioxidant parameters in the pasture compared to the grain diet. Total polyunsaturated fatty acids were higher in the pasture including α-linolenic acid while the grain diet was higher in n-6 polyunsaturated fatty acids including linoleic acid. The n-6:n-3 ratio was more beneficial in the pasture and was 50–90 times higher in the grain diet. Variations in the fatty acid profile of the pasture were observed and varied between 2019 and 2020. Plant growth cycles, climatic conditions, and grazing methods were hypothesized to cause these changes. Altogether, this study increased our knowledge about the nutritional value of feedstuffs and will help ranchers and researchers to better understand the variations of bioactive content based on region, season, and climatic conditions.
Collapse
|
5
|
Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats ( Capra hircus). Animals (Basel) 2022; 12:ani12060750. [PMID: 35327147 PMCID: PMC8944710 DOI: 10.3390/ani12060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Ergot alkaloids produced by a fungal endophyte that infects tall fescue (Lolium arundinaceum; (E+ TF) can induce constriction of the vasculature in ruminants, resulting in “fescue toxicosis”. Legumes contain isoflavones that have been demonstrated to prevent and reverse E+ TF vasoconstriction. Several legumes are conventionally utilized in ruminant production, but can vary in both isoflavone concentration and composition. A feeding study was conducted to determine if isoflavone supplementation via red clover (Trifolium pratense), white clover (Trifolium repens), or soybean (Glycine max) meal can alleviate vasoconstriction when wether goats were challenged with E+ TF seed. The basal diet was chopped grass hay ad libitum. Carotid luminal areas were obtained pre- and post-ruminal infusions of E+ TF seed (15 µg kg BW−1 ergovaline + ergovalanine ± red clover, white clover, or soybean meal at 2.61 mg kg BW−1). When goats were challenged with E+ TF seed, the mean carotid luminal areas decreased by 56.1% (p < 0.01). All treatments were able to partially mitigate vasoconstriction, with red clover being the most effective (+39.8%), and white clover and soybean meal eliciting an intermediate response (+30%, p < 0.01). Results indicate that legumes can relax vasoconstriction in goats consuming ergot alkaloids, despite differences in isoflavone profile and concentrations.
Collapse
|