1
|
de Oliveira Cardoso E, Santiago KB, Conti BJ, Conte FL, Tasca KI, Romagnoli GG, de Assis Golim M, Rainho CA, Bastos JK, Sforcin JM. Brazilian green propolis: A novel tool to improve the cytotoxic and immunomodulatory action of docetaxel on MCF-7 breast cancer cells and on women monocyte. Phytother Res 2021; 36:448-461. [PMID: 34862831 DOI: 10.1002/ptr.7345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Docetaxel (DTX) is used against breast cancer despite its side effects such as toxicity and immunosuppression. Here we investigated the cytotoxic and immunomodulatory effects of the ethanol solution extract of propolis (EEP) in combination with DTX on MCF-7 breast cancer cells and on women's monocyte. The cytotoxic potential of EEP + DTX was assessed by MTT assay and the type of tumor cell death was evaluated by flow cytometry. The effects of EEP + DTX on the migration and invasion of MCF-7 cells were analyzed. Cytokine production by monocytes was assessed by ELISA and the expression of cell surface markers was evaluated by flow cytometry. We also assessed the fungicidal activity of monocytes against Candida albicans and the generation of reactive oxygen species (ROS). Finally, the impact of the supernatants of treated monocytes in the viability, migration, and invasiveness of tumor cells was assessed. EEP enhanced the cytotoxicity of DTX alone against MCF-7 cells by inducing necrosis and inhibiting their migratory ability. EEP + DTX exerted no cytotoxic effects on monocytes and stimulated HLA-DR expression, TNF-α, and IL-6 production, exerted an immunorestorative action in the fungicidal activity, and reduced the oxidative stress. Our findings have practical implications and reveal new insights for complementary medicine.
Collapse
Affiliation(s)
- Eliza de Oliveira Cardoso
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Karina Basso Santiago
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Bruno José Conti
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Fernanda Lopes Conte
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Karen Ingrid Tasca
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | | | - Marjorie de Assis Golim
- Botucatu Blood Center, School of Medicine, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José Maurício Sforcin
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Mendez-Pfeiffer P, Alday E, Carreño AL, Hernández-Tánori J, Montaño-Leyva B, Ortega-García J, Valdez J, Garibay-Escobar A, Hernandez J, Valencia D, Velazquez C. Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis. Antioxidants (Basel) 2020; 9:antiox9121294. [PMID: 33348680 PMCID: PMC7765891 DOI: 10.3390/antiox9121294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting poplar-type markers, as well as a 6-methoxylated flavonoid, xanthomicrol, characteristic of Asteraceae plants. In addition, CP has shown significant antioxidant properties and antiproliferative activity on cancer cells. In this study, we analyzed the influence of collection time on the chemical constitution, antiproliferative activity and protective capacity of CP against reactive oxygen species (ROS), by using HPLC–UV–diode array detection (DAD) analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-Dimethyltetrazoliumbromide (MTT) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays, as well as cellular antioxidant activity (CAA) assay on murine B-cell lymphoma M12.C3.F6 cells. HPLC–UV–DAD analyses of seasonally collected CP (one-year period) revealed quantitative differences among the most abundant CP constituents: pinocembrin, galangin, chrysin and pinobanksin-3-O-acetate. Though all seasonal samples of CP induced an antiproliferative effect in M12.C3.F6 cells, CP from autumn showed the highest inhibitory activity (IC50: 5.9 ± 0.6 µg/mL). The DPPH assay pointed out that CP collected in autumn presented the highest antioxidant potential (IC50: 58.8 ± 6.7 µg/mL), followed by winter (65.7 ± 12.2 µg/mL) and spring (67.0 ± 7.5 µg/mL); meanwhile, the summer sample showed a lesser antioxidant capacity (IC50: 98.7 ± 2.5 µg/mL). The CAA assay demonstrated that CP induced a significant protective effect against ROS production elicited by H2O2 in M12.C3.F6 cells. Pretreatment of M12.C3.F6 cells with CP from spring and autumn (25 and 50 µg/mL for 1 h) showed the highest reduction in intracellular ROS induced by H2O2 (1 and 5 mM). These results indicate that the antiproliferative effect and cellular antioxidant activity of CP are modulated by quantitative fluctuations in its polyphenolic profile due to its collection time.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Ana Laura Carreño
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Jorge Hernández-Tánori
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
| | - Beatriz Montaño-Leyva
- Departamento de Investigacion y Posgrado en Alimentos, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Jesús Ortega-García
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
| | - Judith Valdez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Veracruz C.P. 91190, Mexico;
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
- Correspondence: (D.V.); (C.V.); Tel.: +52-(637)-372-65-40 (D.V.); +52-(662)-259-21-63 (C.V.); Fax: +52-(662)-259-21-63 (C.V.)
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
- Correspondence: (D.V.); (C.V.); Tel.: +52-(637)-372-65-40 (D.V.); +52-(662)-259-21-63 (C.V.); Fax: +52-(662)-259-21-63 (C.V.)
| |
Collapse
|
3
|
Effects of Propolis and Phenolic Acids on Triple-Negative Breast Cancer Cell Lines: Potential Involvement of Epigenetic Mechanisms. Molecules 2020; 25:molecules25061289. [PMID: 32178333 PMCID: PMC7143942 DOI: 10.3390/molecules25061289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer is an aggressive disease frequently associated with resistance to chemotherapy. Evidence supports that small molecules showing DNA methyltransferase inhibitory activity (DNMTi) are important to sensitize cancer cells to cytotoxic agents, in part, by reverting the acquired epigenetic changes associated with the resistance to therapy. The present study aimed to evaluate if chemical compounds derived from propolis could act as epigenetic drugs (epi-drugs). We selected three phenolic acids (caffeic, dihydrocinnamic, and p-coumaric) commonly detected in propolis and the (−)-epigallocatechin-3-gallate (EGCG) from green tea, which is a well-known DNA demethylating agent, for further analysis. The treatment with p-coumaric acid and EGCG significantly reduced the cell viability of four triple-negative breast cancer cell lines (BT-20, BT-549, MDA-MB-231, and MDA-MB-436). Computational predictions by molecular docking indicated that both chemicals could interact with the MTAse domain of the human DNMT1 and directly compete with its intrinsic inhibitor S-Adenosyl-l-homocysteine (SAH). Although the ethanolic extract of propolis (EEP) did not change the global DNA methylation content, by using MS-PCR (Methylation-Specific Polymerase Chain Reaction) we demonstrated that EEP and EGCG were able to partly demethylate the promoter region of RASSF1A in BT-549 cells. Also, in vitro treatment with EEP altered the RASSF1 protein expression levels. Our data indicated that some chemical compound present in the EEP has DNMTi activity and can revert the epigenetic silencing of the tumor suppressor RASSF1A. These findings suggest that propolis are a promising source for epi-drugs discovery.
Collapse
|