1
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Lever J, Kreuder F, Henry J, Hung A, Allard PM, Brkljača R, Rix C, Taki AC, Gasser RB, Kaslin J, Wlodkowic D, Wolfender JL, Urban S. Targeted Isolation of Antibiotic Brominated Alkaloids from the Marine Sponge Pseudoceratina durissima Using Virtual Screening and Molecular Networking. Mar Drugs 2022; 20:md20090554. [PMID: 36135743 PMCID: PMC9503778 DOI: 10.3390/md20090554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Many targeted natural product isolation approaches rely on the use of pre-existing bioactivity information to inform the strategy used for the isolation of new bioactive compounds. Bioactivity information can be available either in the form of prior assay data or via Structure Activity Relationship (SAR) information which can indicate a potential chemotype that exhibits a desired bioactivity. The work described herein utilizes a unique method of targeted isolation using structure-based virtual screening to identify potential antibacterial compounds active against MRSA within the marine sponge order Verongiida. This is coupled with molecular networking-guided, targeted isolation to provide a novel drug discovery procedure. A total of 12 previously reported bromotyrosine-derived alkaloids were isolated from the marine sponge species Pseudoceratina durissima, and the compound, (+)-aeroplysinin-1 (1) displayed activity against the MRSA pathogen (MIC: <32 µg/mL). The compounds (1−3, 6 and 9) were assessed for their central nervous system (CNS) interaction and behavioral toxicity to zebrafish (Danio rerio) larvae, whereby several of the compounds were shown to induce significant hyperactivity. Anthelmintic activity against the parasitic nematode Haemonchus contorutus was also evaluated (2−4, 6−8).
Collapse
Affiliation(s)
- James Lever
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476 Melbourne, VIC 3001, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jason Henry
- Neurotoxicology Lab., School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia
| | - Andrew Hung
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476 Melbourne, VIC 3001, Australia
| | | | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia
| | - Colin Rix
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476 Melbourne, VIC 3001, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agriculture Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agriculture Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Neurotoxicology Lab., School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476 Melbourne, VIC 3001, Australia
- Correspondence:
| |
Collapse
|
3
|
Carnovali M, Ciavatta ML, Mollo E, Roussis V, Banfi G, Carbone M, Mariotti M. Aerophobin-1 from the Marine Sponge Aplysina aerophoba Modulates Osteogenesis in Zebrafish Larvae. Mar Drugs 2022; 20:md20020135. [PMID: 35200664 PMCID: PMC8880152 DOI: 10.3390/md20020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Longer life expectancy has led to an increase in efforts directed to the discovery of new healing agents for disorders related to aging, such as bone diseases. Harboring an incredible variety of bioactive metabolites, marine organisms are standing out as fruitful sources also in this therapeutic field. On the other hand, the in vivo zebrafish model has proven to be an excellent low-cost screening platform for the fast identification of molecules able to regulate bone development. By using zebrafish larvae as a mineralization model, we have thus evaluated the effects of the crude acetonic extract from the marine sponge Aplysina aerophoba and its bromotyrosine components on bone development. Obtained results led to the selection of aerophobin-1 (1) as a promising candidate for applications in regenerative medicine, paving the way for the development of a novel therapeutic option in osteoporosis treatment.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (M.C.); (G.B.)
| | - Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche—Istituto di Chimica Biomolecolare (CNR-ICB), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.C.); (E.M.)
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche—Istituto di Chimica Biomolecolare (CNR-ICB), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.C.); (E.M.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (M.C.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche—Istituto di Chimica Biomolecolare (CNR-ICB), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.C.); (E.M.)
- Correspondence: (M.C.); (M.M.); Tel.: +39-08-1867-5227 (M.C.); +39-02-9647-4369 (M.M.)
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (M.C.); (G.B.)
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università Degli Studi di Milano, Via della Commenda 10, 20122 Milano, Italy
- Correspondence: (M.C.); (M.M.); Tel.: +39-08-1867-5227 (M.C.); +39-02-9647-4369 (M.M.)
| |
Collapse
|
4
|
Lima E, Medeiros J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar Drugs 2022; 20:75. [PMID: 35049930 PMCID: PMC8780771 DOI: 10.3390/md20010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), increases continuously demanding the urgent development of anti-Alzheimer's agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.
Collapse
Affiliation(s)
- Elisabete Lima
- Faculty of Science and Technology (FCT), Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal;
| | - Jorge Medeiros
- Faculty of Science and Technology (FCT), Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
| |
Collapse
|
5
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
6
|
Sirimangkalakitti N, Yokoya M, Chamni S, Chanvorachote P, Plubrukrn A, Saito N, Suwanborirux K. Synthesis and Absolute Configuration of Acanthodendrilline, a New Cytotoxic Bromotyrosine Alkaloid from the Thai Marine Sponge Acanthodendrilla sp. Chem Pharm Bull (Tokyo) 2016; 64:258-62. [DOI: 10.1248/cpb.c15-00901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nachanun Sirimangkalakitti
- Center for Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | - Masashi Yokoya
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University
| | - Supakarn Chamni
- Center for Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit and Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | - Anuchit Plubrukrn
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University
| | - Naoki Saito
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University
| | - Khanit Suwanborirux
- Center for Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| |
Collapse
|