1
|
Auñon-Lopez A, Alberdi-Cedeño J, Pignitter M, Castejón N. Microalgae as a New Source of Oxylipins: A Comprehensive LC-MS-Based Analysis Using Conventional and Green Extraction Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16749-16760. [PMID: 39016675 PMCID: PMC11299188 DOI: 10.1021/acs.jafc.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.
Collapse
Affiliation(s)
- Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Alava), Spain
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Natalia Castejón
- Institute of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
2
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
3
|
Cutignano A, Conte M, Tirino V, Del Vecchio V, De Angelis R, Nebbioso A, Altucci L, Romano G. Cytotoxic Potential of the Marine Diatom Thalassiosira rotula: Insights into Bioactivity of 24-Methylene Cholesterol. Mar Drugs 2022; 20:md20100595. [PMID: 36286419 PMCID: PMC9604713 DOI: 10.3390/md20100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Marine microalgae are receiving great interest as sustainable sources of bioactive metabolites for health, nutrition and personal care. In the present study, a bioassay-guided screening allowed identifying an enriched fraction from SPE separation of the methanolic extract of the marine diatom Thalassiosira rotula with a chemically heterogeneous composition of cytotoxic molecules, including PUFAs, the terpene phytol, the carotenoid fucoxanthin and the phytosterol 24-methylene cholesterol (24-MChol). In particular, this latter was the object of deep investigation aimed to gain insight into the mechanisms of action activated in two tumour cell models recognised as resistant to chemical treatments, the breast MCF7 and the lung A549 cell lines. The results of our studies revealed that 24-MChol, in line with the most studied β-sitosterol (β-SIT), showed cytotoxic activity in a 3–30 µM range of concentration involving the induction of apoptosis and cell cycle arrest, although differences emerged between the two sterols and the two cancer systems when specific targets were investigated (caspase-3, caspase-9, FAS and TRAIL).
Collapse
Affiliation(s)
- Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Akton 55, 80133 Napoli, Italy
- Correspondence: ; Tel.: +39-081-8675313
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Napoli, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Napoli, Italy
| | - Roberto De Angelis
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Akton 55, 80133 Napoli, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Via L. De Crecchio 7, 80138 Napoli, Italy
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale Area P.I.P., 83031 Ariano Irpino, Italy
| | - Giovanna Romano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Akton 55, 80133 Napoli, Italy
| |
Collapse
|
4
|
Montuori E, Capalbo A, Lauritano C. Marine Compounds for Melanoma Treatment and Prevention. Int J Mol Sci 2022; 23:10284. [PMID: 36142196 PMCID: PMC9499452 DOI: 10.3390/ijms231810284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is considered a multifactorial disease etiologically divided into melanomas related to sun exposure and those that are not, but also based on their mutational signatures, anatomic site, and epidemiology. The incidence of melanoma skin cancer has been increasing over the past decades with 132,000 cases occurring globally each year. Marine organisms have been shown to be an excellent source of natural compounds with possible bioactivities for human health applications. In this review, we report marine compounds from micro- and macro-organisms with activities in vitro and in vivo against melanoma, including the compound Marizomib, isolated from a marine bacterium, currently in phase III clinical trials for melanoma. When available, we also report active concentrations, cellular targets and mechanisms of action of the mentioned molecules. In addition, compounds used for UV protection and melanoma prevention from marine sources are discussed. This paper gives an overview of promising marine molecules which can be studied more deeply before clinical trials in the near future.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Anita Capalbo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
5
|
Castejón N, Marko D. Fatty Acid Composition and Cytotoxic Activity of Lipid Extracts from Nannochloropsis gaditana Produced by Green Technologies. Molecules 2022; 27:molecules27123710. [PMID: 35744834 PMCID: PMC9230018 DOI: 10.3390/molecules27123710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae are alternatives and sustainable sources of omega-3 long chain-polyunsaturated fatty acids (LC-PUFA). However, the eco-friendly extraction of these bioactives remains unexplored. In this work, the use of enzyme-based methods in combination with ultrasounds was evaluated as green approaches to extract the omega-3 lipids from Nannochloropsis gaditana. Three commercial enzymatic solutions (Viscozyme® L, Celluclast® 1.5 L, and Saczyme®) were investigated, and results were compared with the traditional Folch method. A promising extraction approach was developed by using Saczyme®, achieving a lipid yield of 25.7% ± 0.5, comparable to the traditional method (27.3% ± 0.7) (p > 0.05). Similar omega-3 content was found by GC−MS analysis for both lipid extracts (30.2% ± 2.4 and 29.3% ± 0.8 for the green and the traditional method, respectively), showing that the green approaches did not affect the fatty acid profile. Moreover, the cytotoxic activity of produced lipids was assessed by comparing human colon cancer cells (HCT-116) and epithelial nontumorigenic immortalized cells (HCEC-1CT). Results suggest that the lipid extracts have a selective effect, reducing the viability of the colon carcinoma cells but not the nontumorigenic cells. Thus, this study provides new eco-innovative approaches for extracting the omega-3 LC-PUFA from microalgae with promising biological properties.
Collapse
|
6
|
In Vivo Nutritional Assessment of the Microalga Nannochloropsis gaditana and Evaluation of the Antioxidant and Antiproliferative Capacity of Its Functional Extracts. Mar Drugs 2022; 20:md20050318. [PMID: 35621969 PMCID: PMC9147351 DOI: 10.3390/md20050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nannochloropsis gaditana is a microalga with interesting nutritional and functional value due to its high content of protein, polyunsaturated fatty acids, and bioactive compounds. However, the hardness of its cell wall prevents accessibility to these components. This work aimed to study the effect of a treatment to increase the fragility of the cell wall on the bioavailability of its nutrients and functional compounds. The antioxidant and antiproliferative capacity of functional extracts from treated and untreated N. gaditana was assessed, and the profile of bioactive compounds was characterized. Furthermore, to study the effect of treatment on its nutrient availability and functional capacity, an in vivo experiment was carried out using a rat experimental model and a 20% dietary inclusion level of microalgae. Functional extracts from treated N. gaditana exhibited higher antioxidant activity than the untreated control. Furthermore, the treated microalga induced hypoglycemic action, higher nitrogen digestibility, and increased hepatic antioxidant activity. In conclusion, N. gaditana has interesting hepatoprotective, antioxidant, and anti-inflammatory potential, thus proving itself an ideal functional food candidate, especially if the microalga is treated to increase the fragility of its cell wall before consumption.
Collapse
|
7
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
8
|
Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar Drugs 2020; 18:md18070342. [PMID: 32629777 PMCID: PMC7401250 DOI: 10.3390/md18070342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.
Collapse
|