1
|
Gonfa YH, Bachheti A, Semwal P, Rai N, Singab AN, Bachheti RK. Hepatoprotective activity of medicinal plants, their phytochemistry, and safety concerns: a systematic review. Z NATURFORSCH C 2024:znc-2024-0116. [PMID: 39291928 DOI: 10.1515/znc-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Medicinal plants and their derivatives represent a promising reservoir of remedies for various ailments. Especially secondary metabolites of these plants, including alkaloids, flavonoids, phenolic compounds, terpenoids, steroids, saponins, tannins, and anthraquinones, play crucial roles in hepatoprotection. Studies have identified several prominent phytoconstituents, such as silymarin, quercetin, luteolin, glycyrrhizin, curcumin, gallic acid, chebulic acid, catechin, aloin, emodin, liquiritin, liquiritigenin, cudraflavone B, and karaviloside, as effective agents for addressing hepatotoxicity. The mechanisms underlying their efficacy include antioxidant, anti-inflammatory, free radical scavenging, and the ability to block oxidative stress, cytokine production, and stabilize liver cell membranes. The application of natural products derived from medicinal plants in treating liver injuries is rooted in their efficacy, cost-effectiveness, and safety profile, contributing to their popularity. Many studies, encompassing in vitro, in vivo, preclinical, and clinical investigations, have demonstrated that the extracts of medicinal plants mitigate chemical-induced liver damage using animal models. However, intensive research efforts regarding the safety, regulatory standard, and quality control issues for using medicinal plants as hepatoprotective agents remain the strong task of scholars. The primary focus of this systematic review is to analyze the current state of the literature regarding treating liver ailments using extracts from medicinal plants, examining their phytochemical composition, and addressing associated safety considerations.
Collapse
Affiliation(s)
- Yilma Hunde Gonfa
- Department of Chemistry, P.O. Box: 19, Ambo University, Ambo, Ethiopia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era Deemed to be University, Dehradun-248002, Uttarakhand, India
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun-248002, Uttarakhand, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun-248002, Uttarakhand, India
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Rakesh Kumar Bachheti
- Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun, 248002, Uttarakhand, India
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, P.O. Box-1641716417 Ethiopia
- University Centre for Research and Development, Chandigarh University, Gharuan 140413, Punjab, India
| |
Collapse
|
2
|
Poštić D, Štrbanović R, Tabaković M, Popović T, Ćirić A, Banjac N, Trkulja N, Stanisavljević R. Germination and the Initial Seedling Growth of Lettuce, Celeriac and Wheat Cultivars after Micronutrient and a Biological Application Pre-Sowing Seed Treatment. PLANTS 2021; 10:plants10091913. [PMID: 34579445 PMCID: PMC8466355 DOI: 10.3390/plants10091913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Seed treatments with zinc, boron, biostimulant Coveron and MIX (zinc + boron + Coveron) were applied to three lettuce and three celeriac cultivars. Seeds of three wheat cultivars were treated under laboratory conditions with Trichoderma harzianum and eight Bacillus spp. Seed germination, seedling growth, and the presence of the following pathogens were determined: Fusarium sp., Alternaria sp., Penicillium sp., and Mucor sp. The Coveron treatment was the most effective on lettuce seeds tested in the germination cabinet. Seed germination was higher by 4% than in the control. Alternatively, germination of seeds treated with boron in the greenhouse was higher by 12% than in the control. The Coveron treatment had the highest effect on the shoot length, which was greater by 0.7 and 2.1 cm in the germination cabinet and the greenhouse, respectively. This treatment was also the most effective on the root length. Zn, B, and MIX treatments increased celeriac seed germination by 14% in the germination cabinet. The Zn treatment was the most efficient on seeds tested in the greenhouse. The germination was higher by 15%. A significant cultivar × treatment interaction was determined in both observed species under both conditions. The maximum effect on wheat seed germination (8%) was achieved with the T. harzianum treatment in the Salazar cultivar. A significant interdependence (p ≤ 0.01 to p ≤ 0.001) was established between seed germination and the seedling growth. The interrelationship between seed germination and pathogens of all cultivars was negative.
Collapse
Affiliation(s)
- Dobrivoj Poštić
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | - Ratibor Štrbanović
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | | | - Tatjana Popović
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | - Ana Ćirić
- Institute for Biological Research Siniša Stanković—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (N.B.)
| | - Nevena Banjac
- Institute for Biological Research Siniša Stanković—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (N.B.)
| | - Nenad Trkulja
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
| | - Rade Stanisavljević
- Institute for Plant Protection and Environment, 11040 Belgrade, Serbia; (D.P.); (R.Š.); (T.P.); (N.T.)
- Correspondence:
| |
Collapse
|
3
|
A Review of the Health Protective Effects of Phenolic Acids against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections). Molecules 2021; 26:molecules26175405. [PMID: 34500838 PMCID: PMC8433690 DOI: 10.3390/molecules26175405] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections—including coronaviruses-based ones).
Collapse
|