1
|
Integrated Analysis of Transcriptome and Metabolome and Evaluation of Antioxidant Activities in Lavandulapubescens. Antioxidants (Basel) 2021; 10:antiox10071027. [PMID: 34202322 PMCID: PMC8300654 DOI: 10.3390/antiox10071027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Lavandula pubescens, belonging to the Labiatae family, is a newly discovered strongly aromatic species of lavender that is potentially beneficial for human health. Given the economic importance of lavender species, we sought in this study to characterize the terpenoid biosynthesis of L. pubescens by obtaining transcriptomic and metabolic datasets. Transcriptome analysis of L. pubescens grown aseptically in tissue culture medium yielded 124,233 unigenes with an average length of 470 bp and N50 value of 522 bp from 9,476,122,928 raw reads. In order to provide relevant biological information, the unigenes were annotated using the following public databases: National Center for Biotechnology Information (NCBI) nucleotide (NT) and non-redundant protein (NR), Brassica (BRAD), Arabidopsis Information Resource (TAIR), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). NR annotation results revealed that L. pubescens is genetically closely related to Sesamum indicum. On the basis of the transcriptome data, a total of 14 cDNA clones encoding the terpene biosynthetic genes LpDXS, LpMCT, LpMCS, LpHDR, LpIDI, LpAACT, LpHMGS, LpHMGR, LpMVK, LpPMK, LpMVD, LpGPPS, LpSQS, and LpGGPPS were identified in L. pubescens. These were quantified in the roots, stems, and leaves of L. pubescens using quantitative real-time polymerase chain reaction (qRT-PCR), which revealed that the gene expression levels were higher in the leaves and stems than in the roots, which was found to be consistent with the levels of ursolic and oleanolic acids in the different organs using high-performance liquid chromatography (HPLC). A total of 48 hydrophilic metabolites were identified and quantified in the organs using gas chromatography time-of-flight mass spectrometry (GC-TOFMS). Furthermore, the antioxidant activity of an ethyl acetate extract of L. pubescens leaves was examined using different methods to determine the potential therapeutic properties. A reducing power assay revealed that the absorbance values increased in a concentration-dependent manner, whereas a 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay indicated the strong activity (60.4 ± 0.9%) of the ethyl acetate extract at a concentration of 100 µg/mL, which also showed strong hydrogen peroxide (57.4 ± 2.7%), superoxide radical (62.1 ± 0.7%), and hydroxyl radical (58.6 ± 0.4%) scavenging activities.
Collapse
|
2
|
Schwartz M, Neiers F, Feron G, Canon F. The Relationship Between Salivary Redox, Diet, and Food Flavor Perception. Front Nutr 2021; 7:612735. [PMID: 33585536 PMCID: PMC7876224 DOI: 10.3389/fnut.2020.612735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The mouth is the gateway for entrance of food and microorganisms into the organism. The oral cavity is bathed by saliva, which is thus the first fluid that food and microorganisms will face after their entrance. As a result, saliva plays different functions, including lubrication, predigestion, protection, detoxification, and even transport of taste compounds to chemoreceptors located in the taste buds. To ensure its function of protection, saliva contains reactive harmful compounds such as reactive oxygen species that are controlled and neutralized by the antioxidant activity of saliva. Several antioxidant molecules control the production of molecules such as reactive oxygen compounds, neutralize them and/or repair the damage they have caused. Therefore, a balance between reactive oxidant species and antioxidant compounds exists. At the same time, food can also contain antioxidant compounds, which can participate in the equilibrium of this balance. Numerous studies have investigated the effects of different food components on the antioxidant capacity of saliva that correspond to the ability of saliva to neutralize reactive oxygen species. Contradictory results have sometimes been obtained. Moreover, some antioxidant compounds are also cofactors of enzymatic reactions that affect flavor compounds. Recent studies have considered the salivary antioxidant capacity to explain the release of flavor compounds ex vivo or in vivo. This article aims to review the effect of food on the antioxidant capacity of saliva and the impact of salivary antioxidant capacity on flavor perception after a brief presentation of the different molecules involved.
Collapse
Affiliation(s)
| | | | | | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Dijon, France
| |
Collapse
|
3
|
Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent improvements in light-emitting diode (LED) technology afford an excellent opportunity to investigate the relationship between different light sources and plant metabolites. Accordingly, the goal of the present study was to determine the effect of different LED (white, blue, and red) treatments on the contents of glucosinolates (glucoiberin, gluconapin, sinigrin, gluconasturtiin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, glucobrassicin, and neoglucobrassicin) and phenolic compounds (4-hydroxybenzonate, catechin, chlorogenic acid, caffeate, gallate, sinapate, and quercetin) in Brassica juncea sprouts. The sprouts were grown in a growth chamber at 25 °C under irradiation with white, blue, or red LED with a flux rate of 90 μmol·m−2·s−1 and a long-day photoperiod (16 h light/8 h dark cycle). Marked differences in desulfoglucosinolate contents were observed in response to treatment with different LEDs and different treatment durations. In addition, the highest total desulfoglucosinolate content was observed in response to white LED light treatment, followed by treatment with red LED light, and then blue LED light. Among the individual desulfoglucosinolates identified in the sprouts, sinigrin exhibited the highest content, which was observed after three weeks of white LED light treatment. The highest total phenolic contents were recorded after one week of white and blue LED light treatment, whereas blue LED irradiation increased the production of most of the phenolic compounds identified, including 4-hydroxybenzonate, gallate, sinapate, caffeate, quercetin, and chlorogenic acid. The production of phenolics decreased gradually with increasing duration of LED light treatment, whereas anthocyanin accumulation showed a progressive increase during the treatment. These findings indicate that white LED light is appropriate for glucosinolate accumulation, whereas blue LED light is effective in increasing the production of phenolic compounds in B. juncea sprouts.
Collapse
|
4
|
Hyeon H, Xu JL, Kim JK, Choi Y. Comparative metabolic profiling of cultivated and wild black soybeans reveals distinct metabolic alterations associated with their domestication. Food Res Int 2020; 134:109290. [PMID: 32517920 DOI: 10.1016/j.foodres.2020.109290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
Generally, cultivated black soybean (CBS) has been used as a major source of various nutrients for humans and animals. To assess the metabolic alterations induced by domestication in soybean, we performed a comprehensive metabolite profiling of 56 soybean varieties, including 28 CBS and 28 wild black soybean (WBS) varieties. A total of 48 metabolites were characterized, including 45 primary and 3 secondary metabolites, from CBS and WBS. The results of principal component analysis and hierarchical cluster analysis (HCA) revealed significant metabolic differences between CBS and WBS that were closely related to metabolic pathways. The results indicate that flavonoids correlated positively with phenylalanine, a precursor for phenylpropanoid biosynthesis; the contents of flavonoids and phenylpropanoids were higher in WBS. Pathway analysis revealed that CBS contained large amounts of TCA cycle intermediates, amino acids, and fatty acids as a result of increased energy metabolism, amino acid metabolism, and seed filling. The projection to latent structure method, using the partial least squares method, was applied to predict the flavonoid content in soybean seed, which indicated that sucrose, threonic acid, citric acid, and fatty acids are important in predicting the antioxidant content of samples. This work will provide important information for designing new soybean cultivars with enhanced nutritional and agricultural traits.
Collapse
Affiliation(s)
- Hyejin Hyeon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jiu Liang Xu
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; School of Agriculture Green Development, China Agricultural University, 100193 Beijing, China
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Department of Biological Chemistry, University of Science and Technology, Youseng-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
5
|
Park CH, Morgan AMA, Park BB, Lee SY, Lee S, Kim JK, Park SU. Metabolic Analysis of Four Cultivars of Liriope platyphylla. Metabolites 2019; 9:E59. [PMID: 30917595 PMCID: PMC6468586 DOI: 10.3390/metabo9030059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023] Open
Abstract
Liriope platyphylla (Liliaceae), a medical plant distributed mainly in China, Taiwan, and Korea, has been used traditionally for the treatment of cough, sputum, asthma, and neurodegenerative diseases. The present study involved the metabolic profiling of this plant and reports spicatoside A accumulation in four different varieties of L. platyphylla (Cheongyangjaerae, Seongsoo, Cheongsim, and Liriope Tuber No. 1) using HPLC and gas chromatography time-of-flight mass spectrometry (GC⁻TOFMS). A total of 47 metabolites were detected in the different cultivars using GC⁻TOFMS-based metabolic profiling. The resulting data were subjected to principal component analysis (PCA) for determining the whole experimental variation, and the different cultivars were separated by score plots. Furthermore, hierarchical clustering, Pearson's correlation, and partial least-squares discriminant analyses (PLS-DA) were subsequently performed to determine significant differences in the various metabolites of the cultivars. The HPLC data revealed that the presence of spicatoside A was detected in all four cultivars, with the amount of spicatoside A varying among them. Among the cultivars, Liriope Tuber No. 1 contained the highest amount of spicatoside A (1.83 ± 0.13 mg/g dry weight), followed by Cheongyangjaerae (1.25 ± 0.01 mg/g dry weight), Cheongsim (1.09 ± 0.04 mg/g dry weight), and Seongsoo (1.01 ± 0.02 mg/g dry weight). The identification of spicatoside A was confirmed by comparing the retention time of the sample with the retention time of the standard. Moreover, the Cheongsim cultivar contained higher levels of phenolic compounds-including vanillic acid, quinic acid, gallic acid, chlorogenic acid, caffeic acid, and benzoic acid-than those of the other two cultivars. On the other hand, the levels of amino acids were higher in the Seongsoo cultivar. Therefore, this study may help breeders produce new varieties with improved nutraceutical and nutritional qualities.
Collapse
Affiliation(s)
- Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | | | - Byung Bae Park
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun, Jeollanamdo 59146, Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 456-756, Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
6
|
Park CH, Yeo HJ, Baskar TB, Park YE, Park JS, Lee SY, Park SU. In Vitro Antioxidant and Antimicrobial Properties of Flower, Leaf, and Stem Extracts of Korean Mint. Antioxidants (Basel) 2019; 8:antiox8030075. [PMID: 30917545 PMCID: PMC6466538 DOI: 10.3390/antiox8030075] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023] Open
Abstract
Traditionally, Agastache rugosa (Korean mint) has been widely used to treat various infectious diseases. The aims of this study were to: (i) determine the phenylpropanoid content of the plant using high-performance liquid chromatography; (ii) undertake total anthocyanin, flavonoid, and phenolic assays; (iii) and evaluate the antioxidant and antibacterial properties of the methanol extracts from the stem, leaves, and flowers of Korean mint. The total anthocyanin, flavonoid, and phenolic content assays showed that the flowers had higher phenolic levels than the stem and leaves. The reducing power, the 2,2-diphenyl-1-picrylhydrazyl superoxide radical scavenging abilities, and the hydrogen peroxide radical scavenging activities were also evaluated so that the antioxidant activities of the extracts from the different plant parts could be evaluated. The flower extracts revealed higher antioxidant properties than the other parts. The antibacterial properties of the methanol extracts from A. rugosa were analyzed by the disc diffusion method, and the flower extracts had higher antibacterial activities against the six bacterial strains used in the study than the other parts. This study provides information on the synergistic antioxidant and antibacterial properties of phenolics derived from the different parts of Korean mint.
Collapse
Affiliation(s)
- Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Thanislas Bastin Baskar
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Ye Eun Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong Seok Park
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun, Jeollanamdo 59146, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|