1
|
Wang B, Cai J, Huang L, Chen Y, Wang R, Luo M, Yang M, Zhang M, Nasihat, Chen G, Huang G, Zheng C. Significance of research on natural products from marine-derived Aspergillus species as a source against pathogenic bacteria. Front Microbiol 2024; 15:1464135. [PMID: 39364162 PMCID: PMC11446753 DOI: 10.3389/fmicb.2024.1464135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial infections pose a significant clinical burden on global health. The growing incidence of drug-resistant pathogens highlights the critical necessity to identify and isolate bioactive compounds from marine resources. Marine-derived fungi could provide novel lead compounds against pathogenic bacteria. Due to the particularity of the marine environment, Aspergillus species derived from marine sources have proven to be potent producers of bioactive secondary metabolites and have played a considerable role in advancing drug development. This study reviews the structural diversity and activities against pathogenic bacteria of secondary metabolites isolated from marine-derived Aspergillus species over the past 14 years (January 2010-June 2024), and 337 natural products (including 145 new compounds) were described. The structures were divided into five major categories-terpenoids, nitrogen-containing compounds, polyketides, steroids, and other classes. These antimicrobial metabolites will offer lead compounds to the development and innovation of antimicrobial agents.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Jin Cai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Longtao Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Yonghao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Ruoxi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Mengyao Luo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Meng Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Mohan Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Nasihat
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| |
Collapse
|
2
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
3
|
Liu YF, Yue YF, Feng LX, Zhu HJ, Cao F. Asperienes A-D, Bioactive Sesquiterpenes from the Marine-Derived Fungus Aspergillus flavus. Mar Drugs 2019; 17:md17100550. [PMID: 31561527 PMCID: PMC6836145 DOI: 10.3390/md17100550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Marine-derived fungi of the genera Aspergillus could produce novel compounds with significant bioactivities. Among these fungi, the strain Aspergillus flavus is notorious for its mutagenic mycotoxins production. However, some minor components with certain toxicities from A. flavus have not been specifically surveyed and might have potent biological activities. Our investigation of the marine-derived fungus Aspergillus flavus CF13-11 cultured in solid medium led to the isolation of four C-6′/C-7′ epimeric drimane sesquiterpene esters, asperienes A–D (1–4). Their absolute configurations were assigned by electronic circular dichroism (ECD) and Snatzke’s methods. This is the first time that two pairs of C-6′/C-7′ epimeric drimane sesquiterpene esters have successfully been separated. Aperienes A–D (1–4) displayed potent bioactivities towards four cell lines with the IC50 values ranging from 1.4 to 8.3 μM. Interestingly, compounds 1 and 4 exhibited lower toxicities than 2 and 3 toward normal GES-1 cells, indicating more potential for development as an antitumor agent in the future.
Collapse
Affiliation(s)
- Yun-Feng Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yu-Fei Yue
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Li-Xi Feng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Hua-Jie Zhu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Fei Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|