1
|
Han HY, Park SM, Ko JW, Oh JH, Kim SK, Kim TW. Integrated transcriptomic analysis of liver and kidney after 28 days of thioacetamide treatment in rats. Toxicol Res 2023; 39:201-211. [PMID: 37008694 PMCID: PMC10050285 DOI: 10.1007/s43188-022-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Thioacetamide (TAA) was developed as a pesticide; however, it was soon found to cause hepatic and renal toxicity. To evaluate target organ interactions during hepatotoxicity, we compared gene expression profiles in the liver and kidney after TAA treatment. Sprague-Dawley rats were treated daily with oral TAA and then sacrificed, and their tissues were evaluated for acute toxicity (30 and 100 mg/kg bw/day), 7-day (15 and 50 mg/kg bw/day), and 4-week repeated-dose toxicity (10 and 30 mg/kg). After the 4-week repeated toxicity study, total RNA was extracted from the liver and kidneys, and microarray analysis was performed. Differentially expressed genes were selected based on fold change and significance, and gene functions were analyzed using ingenuity pathway analysis. Microarray analysis showed that significantly regulated genes were involved in liver hyperplasia, renal tubule injury, and kidney failure in the TAA-treated group. Commonly regulated genes in the liver or kidney were associated with xenobiotic metabolism, lipid metabolism, and oxidative stress. We revealed changes in the molecular pathways of the target organs in response to TAA and provided information on candidate genes that can indicate TAA-induced toxicity. These results may help elucidate the underlying mechanisms of target organ interactions during TAA-induced hepatotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00156-y.
Collapse
Affiliation(s)
- Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114 Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114 Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34131 Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114 Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34131 Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| |
Collapse
|
2
|
Medicinal properties and anti-inflammatory components of Phytolacca (Shanglu). DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|