1
|
Ketebchi S, Papari Moghadamfard M. A review on the effective natural compounds of medicinal plants on the COVID-19. Nat Prod Res 2024:1-14. [PMID: 38333915 DOI: 10.1080/14786419.2024.2309322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
In this review out of 300 selected articles 70 articles were evaluated, and the most significant compounds impacting COVID-19 and their mechanism of action were introduced. The compounds belong to four categories as follow: Phenolic, Flavonoid, Terpenoid, and Alkaloid compounds. In the phenol groups, the most effective compounds are scutellarin (suppressor of COVID-19 virus), thymol and carvacrol (the most inhibitory effect on COVID-19 virus), in the flavonoid groups, hesperdin (a strong inhibitor on COVID-19), in the terpenoids, methyl tanshinonate and sojil COVID-19 inhibitory effect) and 1,8-cineol (COVID-19 inhibitory effect) and in the last group, niglidine and quinoline alkaloid compounds (COVID-19 inhibitory effect) have been identified and introduced. These compounds have shown promising results due to their structure and effective mechanisms on COVID-19, so it can be an idea for researchers in this field to try to produce drugs by using natural compounds against the COVID-19 and Corona viruses.
Collapse
Affiliation(s)
- Saghar Ketebchi
- Department of Plant Pathology and Plant Protection (Microbiology), Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | |
Collapse
|
2
|
Saha C, Naskar R, Chakraborty S. Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2. Mini Rev Med Chem 2024; 24:39-59. [PMID: 37138419 DOI: 10.2174/1389557523666230503105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
Collapse
Affiliation(s)
- Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Roumi Naskar
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
3
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
4
|
K. Agrawal P. Flavonoids and Possible COVID-19 Integrative Considerations. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH-43081, USA
| |
Collapse
|
5
|
A Review on Herbal Secondary Metabolites Against COVID-19 Focusing on the Genetic Variants of SARS-CoV-2. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: An outbreak of the new coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 2019, subsequently affecting countries worldwide and causing a pandemic. Although several vaccines, such as mRNA vaccines, inactivated vaccines, and adenovirus vaccines, have been licensed in several countries, the danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants persists. To date, Alpha (B.1.1.7), Beta (B.1.351, B.1.351.2, B.1.351.3), Delta (B.1.617.2, AY.1, AY.2, AY. 3), Gamma (P.1, P.1.1, P.1.2), and Iota (B.1 .526) circulating in the United States, Kappa (B.1.617.1) in India, Lambda (C.37) in Peru and Mu (B.1.621) in Colombia are considered the variants of concern and interest. Evidence Acquisition: Data were collected through the end of August 2021 by searching PubMed, Scopus, and Google Scholar databases. There were findings from in silico, in vitro cell-based, and non-cell-based investigations. Results: The potential and safety profile of herbal medicines need clarification to scientifically support future recommendations regarding the benefits and risks of their use. Conclusions: Current research results on natural products against SARS-CoV-2 and variants are discussed, and their specific molecular targets and possible mechanisms of action are summarized.
Collapse
|
6
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|
7
|
Agrawal PK, Agrawal C, Blunden G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022; 27:3828. [PMID: 35744958 PMCID: PMC9231170 DOI: 10.3390/molecules27123828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/23/2022] Open
Abstract
As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
8
|
Liu Y, Yan H, Jia HB, Pan L, Liu JZ, Zhang YW, Wang J, Qin DG, Ma L, Wang T. Jiedu Huoxue Decoction for Cytokine Storm and Thrombosis in Severe COVID-19: A Combined Bioinformatics and Computational Chemistry Approach. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Jiedu Huoxue Decoction (JHD), a recommended traditional prescription for patients with severe COVID-19, has appeared in the treatment protocols in China. Based on bioinformatics and computational chemistry methods, including molecular docking, molecular dynamics (MD) simulation, and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) calculation, we aimed to reveal the mechanism of JHD in treating severe COVID-19. The compounds in JHD were obtained and screened on TCMSP, SwissADME, and ADMETLab platforms. The compound targets were obtained from TCMSP and STITCH, while COVID-19 targets were obtained from Genecards and NCBI. The protein-protein interaction network was constructed by using STRING. Gene Ontology (GO) and KEGG enrichment were performed with ClueGO and R language. AutoDock vina was employed for molecular docking. 100 ns MD simulation of the optimal docking complex was carried out with AmberTools 20. A total of 84 compounds and 29 potential targets of JHD for COVID-19 were collected. The key phytochemicals included quercetin, luteolin, β-sitosterol, puerarin, stigmasterol, kaempferol, and wogonin, which could regulate the immune system. The hub genes included IL6, IL10, VEGFA, IL1B, CCL2, HMOX1, DPP4, and ACE2. ACE2 and DPP4 were related to SARS-CoV-2 entering cells. GO and KEGG analysis showed that JHD could intervene in cytokine storm and endothelial proliferation and migration related to thrombosis. The molecular docking, 100 ns MD simulation, and MM/GBSA calculation confirmed that targets enriched in the COVID-19 pathway had high affinities with related compounds, and the conformations of the puerarin-ACE2, quercetin-EGFR, luteolin-EGFR, and quercetin-IL1B complexes were stable. In a word, JHD could treat COVID-19 by intervening in cytokine storm, thrombosis, and the entry of SARS-CoV-2, while regulating the immune system. These mechanisms were consistent with JHD's therapeutic concept of “detoxification” and “promoting blood circulation and removing blood stasis” in treating COVID-19. The research provides a theoretical basis for the development and application of JHD.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Han Yan
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Hui-bin Jia
- Department of Blood Transfusion, Liaocheng People’s Hospital, Liaocheng, China
| | - Li Pan
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Jia-zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau, China
| | - Ya-wen Zhang
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Jing Wang
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Dao-gang Qin
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Lei Ma
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Ting Wang
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
9
|
Saaty AH. Grapefruit Seed Extracts’ Antibacterial and Antiviral Activity: Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Impact. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/rq6b89xgf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|