1
|
Lawrence J, Sorra K. Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery. J Funct Morphol Kinesiol 2024; 9:181. [PMID: 39449475 PMCID: PMC11503318 DOI: 10.3390/jfmk9040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Low-level laser therapy (LLLT) has gained traction in sports and exercise medicine as a non-invasive therapeutic for preconditioning the body, exertion recovery, repair and injury rehabilitation. LLLT is hypothesized to modulate cellular metabolism, tissue microenvironment(s) and to decrease inflammation while posing few adverse risks. This review critically examines the evidence-base for LLLT effectiveness focusing on immediate care settings and acute/subacute applications (<6 months post-injury). Methods: A comprehensive literature search was conducted, prioritizing systematic reviews, meta-analyses and their primary research papers. Results: Findings are relevant to trainers and athletes as they manage a wide range of issues from superficial abrasions to deeper tissue concerns. LLLT parameters in the research literature include wide ranges. For body surface structures, studies show that LLLT holds promise in accelerating wound healing. In sport performance studies, LLLT is typically delivered pre-exercise and reveals beneficial effects on exertion recovery, improvements in muscle strength, endurance and reduced fatigue. Evidence is less convincing for acute, deep tissue injury models, where most studies do not report significant benefits for functional outcomes over conventional therapeutic modalities. Conclusions: Variability in LLLT delivery parameters and findings across studies underscores a need for clear treatment guidelines for the profession. Technical properties of laser light delivery to the body also differ materially from LED devices. Sport physiotherapists, team physicians, trainers and athletes should understand limitations in the current evidence-base informing photobiomodulation use in high-performance sport settings and weigh potential benefits versus shortcomings of LLLT use in the mentioned therapeutic contexts.
Collapse
Affiliation(s)
| | - Karin Sorra
- Arroscience Inc., Toronto, ON M2J 4R3, Canada;
- Rotman School of Management, University of Toronto, Toronto, ON M5S 3E6, Canada
| |
Collapse
|
2
|
Keller B, Receno CN, Franconi CJ, Harenberg S, Stevens J, Mao X, Stevens SR, Moore G, Levine S, Chia J, Shungu D, Hanson MR. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 2024; 22:627. [PMID: 38965566 PMCID: PMC11229500 DOI: 10.1186/s12967-024-05410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking. METHODS Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case-control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed. RESULTS Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, V ˙ e, V ˙ O2, V ˙ CO2, V ˙ T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for V ˙ e/ V ˙ CO2, PetCO2, O2pulse, work, V ˙ O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1. CONCLUSIONS Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.
Collapse
Affiliation(s)
- Betsy Keller
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA.
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA
| | - Carl J Franconi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sebastian Harenberg
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Jared Stevens
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Staci R Stevens
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Geoff Moore
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Susan Levine
- Susan Levine, MD Clinical Practice, New York, NY, 10021, USA
| | | | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Li BM, Zhang CK, He JH, Liu YQ, Bao XY, Li FH. The Effects of Photobiomodulation on Knee Function, Pain, and Exercise Tolerance in Older Adults: A Meta-analysis of Randomized Controlled Trials. Arch Phys Med Rehabil 2024; 105:593-603. [PMID: 37419235 DOI: 10.1016/j.apmr.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVE To assess whether photobiomodulation therapy (PBMT) enhances the benefits of exercise in older adults. DATA SOURCES PubMed, Scopus, Medline, and Web of Science, dated to February 2023. STUDY SELECTION All included studies were randomized controlled trials of PBMT combined with exercise co-intervention in persons 60 years and older. OUTCOME MEASURES Western Ontario and McMaster University Osteoarthritis Index (WOMAC-total, pain, stiffness and function), perceived pain intensity, timed Up and Go (TUG) Test, 6-min walk test (6MWT), muscle strength, and knee range of motion were included. DATA EXTRACTION Two researchers independently performed data extraction. Article data were extracted in Excel and summarized by a third researcher. DATA SYNTHESIS The meta-analysis included 14 of the 1864 studies searched in the database. No statistical differences were found between the treatment and control groups in terms of WOMAC-stiffness (mean difference [MD]=-0.31, 95% confidence interval [CI] -0.64 to 0.03), TUG (MD=-0.17, 95% CI -0.71 to 0.38), 6MWT (MD=32.2, 95% CI -44.62 to 109.01), or muscle strength (standardized mean difference=0.24, 95% CI -0.02 to 0.50). However, statistically significant differences were found for WOMAC-total (MD=-6.83, 95% CI -12.3 to -1.37), WOMAC-pain (MD=-2.03, 95% CI -4.06 to -0.01), WOMAC-function (MD=-5.03, 95% CI -9.11 to -0.96), visual analog scale/numeric pain rating scale (MD=-1.24, 95% CI -2.43 to -0.06), and knee range of motion (MD=1.47, 95% CI 0.07 to 2.88). CONCLUSIONS In older adults who exercise regularly, PBMT can potentially provide additional pain relief, improve knee joint function, and increase knee joint range of motion.
Collapse
Affiliation(s)
- Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Chen-Kai Zhang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Jia-Han He
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | | | | | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
4
|
Abdelhalim SM, Shoukry KE, Alsharnoubi J. Effect of low-level laser therapy on quadriceps and foot muscle fatigue in children with spastic diplegia: a randomized controlled study. Lasers Med Sci 2023; 38:182. [PMID: 37572215 PMCID: PMC10423123 DOI: 10.1007/s10103-023-03841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Spastic diplegia is the most common form of cerebral palsy; children with spastic diplegia are suffering from muscle fatigue and spasticity which lead to decreasing power of muscles, impaired motor control, and many functional abilities. The effect of low-level laser (LLL) has a good result as it improves muscles pain and spasticity and in decreasing lactate levels. Forty children were selected with spastic diplegia and were divided into two groups: A and B. Group A received low-level laser treatment (LLLT) with physiotherapy treatment. Group B got physiotherapy sessions. Pain intensity was assessed by the visual analog scale (VAS) of pain which is reliable from age 5, before treatment and after 1-month follow-up. Muscle fatigue and power were assessed by maximum voluntary isometric contraction (MVIC) before treatment and after 1-month follow-up. Also, we tested blood lactate level in both groups; all evaluations were done before treatment and after 1-month follow-up. We found a significant difference between the two groups in VAS and MVIC and blood lactate level test regarding low-level therapy after 1-month follow-up. There is a good effect of low-level laser in increasing muscle power, decreasing blood lactate level, and improving pain.
Collapse
Affiliation(s)
| | - Kamal Elsayed Shoukry
- Department of Pediatric Physical Therapy, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Jehan Alsharnoubi
- Pediatrics Department, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Therapeutic Potential of Photobiomodulation for Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23148043. [PMID: 35887386 PMCID: PMC9320354 DOI: 10.3390/ijms23148043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing global public health problem. The implementation of evidence-based clinical practices only defers the development of kidney failure. Death, transplantation, or dialysis are the consequences of kidney failure, resulting in a significant burden on the health system. Hence, innovative therapeutic strategies are urgently needed due to the limitations of current interventions. Photobiomodulation (PBM), a form of non-thermal light therapy, effectively mitigates mitochondrial dysfunction, reactive oxidative stress, inflammation, and gut microbiota dysbiosis, all of which are inherent in CKD. Preliminary studies suggest the benefits of PBM in multiple diseases, including CKD. Hence, this review will provide a concise summary of the underlying action mechanisms of PBM and its potential therapeutic effects on CKD. Based on the findings, PBM may represent a novel, non-invasive and non-pharmacological therapy for CKD, although more studies are necessary before PBM can be widely recommended.
Collapse
|