1
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Tsang K, Walker R. Dopamine transporter single photon emission computed tomography (DaT-SPECT) use in the diagnosis and clinical management of parkinsonism: an 8-year retrospective study. J Neurol 2023; 270:2550-2558. [PMID: 36795149 PMCID: PMC10129961 DOI: 10.1007/s00415-023-11563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative movement disorder that is typically diagnosed clinically. DaT-SPECT scanning (DaT Scan) can be used when there is diagnostic difficulty differentiating from non-neurodegenerative Parkinsonism. This study assessed the effect of DaT Scan imaging on diagnosis and subsequent clinical management of these disorders. METHODS This single-trust retrospective study involved 455 patients who had undergone DaT scans for investigation for Parkinsonism, between 01/01/2014 and 31/12/2021. Data collected included patient demographics, date of clinical assessment, scan report, pre-scan and post-scan diagnosis, and clinical management. RESULTS The mean age at scan was 70.5 years and 57% were male. The percentage of patients who had an abnormal scan result was 40% (n = 184), whilst 53% (n = 239) had a normal scan result, and 7% (n = 32) had an equivocal scan. Pre-scan diagnosis was consistent with scan results in 71% of cases of neurodegenerative Parkinsonism, whereas this figure was 64% for cases of non-neurodegenerative Parkinsonism. For all DaT scans, the diagnosis was changed in 37% of patients (n = 168), whilst the clinical management was changed in 42% of patients (n = 190). Change in management involved 63% starting dopaminergic medication, 5% stopping dopaminergic medications, and 31% undergoing other changes in management. CONCLUSION DaT imaging is useful for confirming the correct diagnosis and clinical management for patients with clinically indeterminate Parkinsonism. Pre-scan diagnoses were generally consistent with scan results.
Collapse
Affiliation(s)
- Kaki Tsang
- North Tees and Hartlepool Trust, Stockton-upon-Tees, UK. .,Department of Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Richard Walker
- Department of Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Northumbria Healthcare NHS Foundation Trust, Medicine, North Shields, Tyne and Wear, UK
| |
Collapse
|
3
|
Langley J, Hwang KS, Hu XP, Huddleston DE. Nigral volumetric and microstructural measures in individuals with scans without evidence of dopaminergic deficit. Front Neurosci 2022; 16:1048945. [PMID: 36507343 PMCID: PMC9731284 DOI: 10.3389/fnins.2022.1048945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Striatal dopamine transporter (DAT) imaging using 123I-ioflupane single photon positron emitted computed tomography (SPECT) (DaTScan, GE) identifies 5-20% of newly diagnosed Parkinson's disease (PD) subjects enrolling in clinical studies to have scans without evidence of dopaminergic deficit (SWEDD). These individuals meet diagnostic criteria for PD, but do not clinically progress as expected, and they are not believed to have neurodegenerative Parkinsonism. Inclusion of SWEDD participants in PD biomarker studies or therapeutic trials may therefore cause them to fail. DaTScan can identify SWEDD individuals, but it is expensive and not widely available; an alternative imaging approach is needed. Here, we evaluate the use of neuromelanin-sensitive, iron-sensitive, and diffusion contrasts in substantia nigra pars compacta (SNpc) to differentiate SWEDD from PD individuals. Methods Neuromelanin-sensitive, iron-sensitive, and diffusion imaging data for SWEDD, PD, and control subjects were downloaded from the Parkinson's progression markers initiative (PPMI) database. SNpc volume, SNpc iron (R 2), and SNpc free water (FW) were measured for each participant. Results Significantly smaller SNpc volume was seen in PD as compared to SWEDD (P < 10-3) and control (P < 10-3) subjects. SNpc FW was elevated in the PD group relative to controls (P = 0.017). No group difference was observed in SNpc R 2. Conclusion In conclusion, nigral volume and FW in the SWEDD group were similar to that of controls, while a reduction in nigral volume and increased FW were observed in the PD group relative to SWEDD and control participants. These results suggest that these MRI measures should be explored as a cost-effective alternative to DaTScan for evaluation of the nigrostriatal system.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States
| | - Kristy S. Hwang
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Xiaoping P. Hu
- Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States,Department of Bioengineering, University of California, Riverside, Riverside, CA, United States,*Correspondence: Xiaoping P. Hu,
| | - Daniel E. Huddleston
- Department of Neurology, Emory University, Atlanta, GA, United States,Daniel E. Huddleston,
| |
Collapse
|
4
|
Bega D, Kuo PH, Chalkidou A, Grzeda MT, Macmillan T, Brand C, Sheikh ZH, Antonini A. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: a systematic review and meta-analysis. NPJ Parkinsons Dis 2021; 7:43. [PMID: 34031400 PMCID: PMC8144619 DOI: 10.1038/s41531-021-00185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
Images of DaTscan (ioflupane [123I] SPECT) have been used as an adjunct to clinical diagnosis to facilitate the differential diagnosis of neurodegenerative (ND) Parkinsonian Syndrome (PS) vs. non-dopamine deficiency aetiologies of Parkinsonism. Despite several systematic reviews having summarised the evidence on diagnostic accuracy, the impact of imaging results on clinical utility has not been systematically assessed. Our objective was to examine the available evidence on the clinical utility of DaTscan imaging in changing diagnosis and subsequent management of patients with suspected PS. We performed a systematic review of published studies of clinical utility from 2000 to 2019 without language restrictions. A meta-analysis of change in diagnosis and management rates reported from each study was performed using a random-effects model and logit transformation. Sub-group analysis, meta-regression and sensitivity analysis was performed to explore heterogeneity. Twenty studies met the inclusion criteria. Thirteen of these contributed to the meta-analyses including 950 and 779 patients with a reported change in management and change in diagnosis, respectively. The use of DaTscan imaging resulted in a change in management in 54% (95% CI: 47-61%) of patients. Change in diagnosis occurred in 31% (95% CI: 22-42%) of patients. The two pooled analyses were characterised by high levels of heterogeneity. Our systematic review and meta-analysis show that imaging with DaTscan was associated with a change in management in approximately half the patients tested and the diagnosis was modified in one third. Regardless of time from symptom onset to scan results, these changes were consistent. Further research focusing on specific patient subgroups could provide additional evidence on the impact on clinical outcomes.
Collapse
Affiliation(s)
- Danny Bega
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Phillip H Kuo
- Departments of Medical Imaging Medicine, and Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Anastasia Chalkidou
- King's Technology Evaluation Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Mariusz T Grzeda
- King's Technology Evaluation Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Thomas Macmillan
- King's Technology Evaluation Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Zulfiqar H Sheikh
- GE Healthcare, Pollards Wood, Nightingales Ln, Chalfont Saint Giles, UK
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Villemagne VL, Barkhof F, Garibotto V, Landau SM, Nordberg A, van Berckel BNM. Molecular Imaging Approaches in Dementia. Radiology 2021; 298:517-530. [PMID: 33464184 DOI: 10.1148/radiol.2020200028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Frederik Barkhof
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Valentina Garibotto
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Susan M Landau
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Agneta Nordberg
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Bart N M van Berckel
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| |
Collapse
|