1
|
Miwa T, Takemiya Y, Amesara K, Kawai H, Teranishi Y. Arginine-Rich Cell-Penetrating Peptide-Mediated Transduction of Mouse Nasal Cells with FOXP3 Protein Alleviates Allergic Rhinitis. Pharmaceutics 2023; 15:1770. [PMID: 37376217 PMCID: PMC10303077 DOI: 10.3390/pharmaceutics15061770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Intranasal corticosteroids are effective medications against allergic rhinitis (AR). However, mucociliary clearance promptly eliminates these drugs from the nasal cavity and delays their onset of action. Therefore, a faster, longer-lasting therapeutic effect on the nasal mucosa is required to enhance the efficacy of AR management. Our previous study showed that polyarginine, a cell-penetrating peptide, can deliver cargo to nasal cells; moreover, polyarginine-mediated cell-nonspecific protein transduction into the nasal epithelium exhibited high transfection efficiency with minimal cytotoxicity. In this study, poly-arginine-fused forkhead box P3 (FOXP3) protein, the "master transcriptional regulator" of regulatory T cells (Tregs), was administered into the bilateral nasal cavities of the ovalbumin (OVA)-immunoglobulin E mouse model of AR. The effects of these proteins on AR following OVA administration were investigated using histopathological, nasal symptom, flow cytometry, and cytokine dot blot analyses. Polyarginine-mediated FOXP3 protein transduction induced Treg-like cell generation in the nasal epithelium and allergen tolerance. Overall, this study proposes FOXP3 activation-mediated Treg induction as a novel and potential therapeutic strategy for AR, providing a potential alternative to conventional intranasal drug application for nasal drug delivery.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology, Osaka Metropolitan University, Osaka 5458585, Japan; (Y.T.); (K.A.); (H.K.); (Y.T.)
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto 6577575, Japan
| | - Yumi Takemiya
- Department of Otolaryngology, Osaka Metropolitan University, Osaka 5458585, Japan; (Y.T.); (K.A.); (H.K.); (Y.T.)
| | - Kazuki Amesara
- Department of Otolaryngology, Osaka Metropolitan University, Osaka 5458585, Japan; (Y.T.); (K.A.); (H.K.); (Y.T.)
| | - Hiroko Kawai
- Department of Otolaryngology, Osaka Metropolitan University, Osaka 5458585, Japan; (Y.T.); (K.A.); (H.K.); (Y.T.)
| | - Yuichi Teranishi
- Department of Otolaryngology, Osaka Metropolitan University, Osaka 5458585, Japan; (Y.T.); (K.A.); (H.K.); (Y.T.)
| |
Collapse
|
2
|
Mfoafo K, Omidi Y, Omidian H. Thermoresponsive mucoadhesive hybrid gels in advanced drug delivery systems. Int J Pharm 2023; 636:122799. [PMID: 36914019 DOI: 10.1016/j.ijpharm.2023.122799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Thermoresponsive polymers have seen extensive use in the development of stimuli-responsive drug formulations for oral, buccal, nasal, ocular, topical, rectal, parenteral, and vaginal routes of administration. Despite their great potential, their use has been limited by various obstacles, such as undesirable high polymer concentration, wide gelation temperature, low gel strength, poor mucoadhesiveness, and short retention. Mucoadhesive polymers have been suggested to improve the mucoadhesive features of thermoresponsive gels, leading to increased drug bioavailability and efficacy. This article highlights the use of in-situ thermoresponsive mucoadhesive hydrogel blends or hybrids that have been developed and assessed in various routes of administration.
Collapse
Affiliation(s)
- Kwadwo Mfoafo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
3
|
Liu C, Pang C, Chen DS, Wang J, Yi WQ, Yu N, Chen L. In vivo visualization and analysis of ciliary motion in allergic rhinitis models induced by ovalbumin. Exp Biol Med (Maywood) 2022; 247:1287-1297. [PMID: 35507096 PMCID: PMC9379601 DOI: 10.1177/15353702221088781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Due to the lack of an assessment approach, the image of in vivo nasal ciliary motion of allergic rhinitis (AR) has never been captured and analyzed to date. Here, we have used an optimized approach to analyze the nasal ciliary function in vivo in AR rats. The digital microscopy system, a method for direct observation of ciliary motion in a living AR rat model, was applied to visualize and measure ciliary motion in vivo, including ciliary beat frequency (CBF) and ciliary beat distance (CBD). The AR rat model was established by ovalbumin sensitization. Comparisons of nasal ciliary motion in vivo between the experimental group (ovalbumin sensitization, allergen, or histamine) and the control group were analyzed. In the living rat model of allergic rhinitis, CBF and CBD decreased to 57.8 and 73.1% of the control group, respectively, but were restored after administration of chlorpheniramine maleate. Ovalbumin (OVA) significantly inhibited the ciliary motion of normal mucosa in vivo. However, responding to the OVA challenge, the ciliary motion of OVA-sensitized mucosa would not decrease further and stay at a stable level. Histamine stimulated in vivo ciliary motion quickly within 30 min, but afterward, the ciliary motion gradually decreased below the baseline. These results have clarified that in vivo ciliary motion was impaired by nasal mucosal sensitization, and this impairment was most likely related to allergen challenge and histamine. In addition, the short-term stimulation and long-term inhibition effects of histamine on in vivo ciliary motion were first reported in this study.
Collapse
Affiliation(s)
- Chen Liu
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China,National Clinical Research Center for Otolaryngologic Diseases, Beijing 100048, China,State Key Lab of Hearing Science, Ministry of Education, Beijing 100048, China,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100048, China
| | - Chuan Pang
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Dai-shi Chen
- Department of Otorhinolaryngology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Jin Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China,National Clinical Research Center for Otolaryngologic Diseases, Beijing 100048, China,State Key Lab of Hearing Science, Ministry of Education, Beijing 100048, China,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100048, China
| | - Wen-qi Yi
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China,National Clinical Research Center for Otolaryngologic Diseases, Beijing 100048, China,State Key Lab of Hearing Science, Ministry of Education, Beijing 100048, China,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100048, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China,National Clinical Research Center for Otolaryngologic Diseases, Beijing 100048, China,State Key Lab of Hearing Science, Ministry of Education, Beijing 100048, China,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100048, China
| | - Lei Chen
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China,National Clinical Research Center for Otolaryngologic Diseases, Beijing 100048, China,State Key Lab of Hearing Science, Ministry of Education, Beijing 100048, China,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100048, China,Lei Chen.
| |
Collapse
|
4
|
Schilling AL, Cannon E, Lee SE, Wang EW, Little SR. Advances in controlled drug delivery to the sinonasal mucosa. Biomaterials 2022; 282:121430. [DOI: 10.1016/j.biomaterials.2022.121430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/09/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
|
5
|
Anxiety-like behavior induced by allergen is associated with decreased irregularity of breathing pattern in rats. Respir Physiol Neurobiol 2022; 298:103847. [DOI: 10.1016/j.resp.2022.103847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
|
6
|
Salimi M, Ghazvineh S, Nazari M, Dehdar K, Garousi M, Zare M, Tabasi F, Jamaati H, Salimi A, Barkley V, Mirnajafi-Zadeh J, Raoufy MR. Allergic rhinitis impairs working memory in association with drop of hippocampal - Prefrontal coupling. Brain Res 2021; 1758:147368. [PMID: 33582121 DOI: 10.1016/j.brainres.2021.147368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Allergic rhinitis (AR) is a chronic inflammatory disease frequently associated with a deficit in learning and memory. Working memory is an important system for decision making and guidance, which depends on interactions between the ventral hippocampus (vHipp) and the prelimbic prefrontal cortex (plPFC). It is still unclear whether AR influences the activity and coupling of these brain areas, which consequently may impair working memory. The current study aimed to examine alterations of the vHipp-plPFC circuit in a rat model of AR. Our results show decreased working memory performance in AR animals, accompanied by a reduction of theta and gamma oscillations in plPFC. Also, AR reduces coherence between vHipp and plPFC in both theta and gamma frequency bands. Cross-frequency coupling analyses confirmed a reduced interaction between hippocampal theta and plPFC gamma oscillations. Granger causality analysis revealed a reduction in the causal effects of vHipp activity on plPFC oscillations and vice versa. A significant correlation was found between working memory performance with disruption of functional connectivity in AR animals. In summary, our data show that in AR, there is a deficit of functional coupling between hippocampal and prefrontal network, and suggest that this mechanism might contribute to working memory impairment in individuals with AR.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mani Garousi
- Department of Electrical and Engineering, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Salimi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Schilling AL, Kulahci Y, Moore J, Wang EW, Lee SE, Little SR. A thermoresponsive hydrogel system for long-acting corticosteroid delivery into the paranasal sinuses. J Control Release 2020; 330:889-897. [PMID: 33157189 DOI: 10.1016/j.jconrel.2020.10.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Delivering localized treatment to the paranasal sinuses for diseases such as chronic rhinosinusitis (CRS) is particularly challenging because of the small natural openings leading from the sinuses that can be further obstructed by presence of inflammation. As such, oral steroids, topical nasal sprays or irrigation, and surgery can be utilized to treat persistent sinonasal inflammation, but there exists a need for post-operative options for long-term steroid delivery to prevent disease recurrence. In the present study, a Thermogel, Extended-release Microsphere-based-delivery to the Paranasal Sinuses (TEMPS) is developed with the corticosteroid mometasone furoate. Specifically, the bioactive steroid is released for 4 weeks from poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a poly(N-isopropylacrylamide) (p-NIPAAm)-based hydrogel. The temperature-responsive system undergoes a reversible sol-gel transition at 34-35 °C such that it can be applied as a liquid at ambient temperature, conforming to the sinonasal epithelium as it gels. In a rabbit model of CRS, TEMPS was maintained in rabbit sinuses and effectively reduced sinonasal inflammation as characterized by micro-computed tomography and histopathology analysis. Ultimately, the combination of controlled release microspheres with a thermoresponsive hydrogel provides flexibility for encapsulating therapeutics in a reversible and conforming system for localized delivery to the sinuses.
Collapse
Affiliation(s)
- Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, United States of America
| | - Yalcin Kulahci
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, United States of America
| | - John Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219, United States of America
| | - Eric W Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219, United States of America
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219, United States of America
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, United States of America; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, United States of America; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States of America; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, United States of America; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
8
|
Intranasal Drug Delivery into Mouse Nasal Mucosa and Brain Utilizing Arginine-Rich Cell-Penetrating Peptide-Mediated Protein Transduction. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09971-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Salimi M, Ghazvineh S, Zare M, Parsazadegan T, Dehdar K, Nazari M, Mirnajafi-Zadeh J, Jamaati H, Raoufy MR. Distraction of olfactory bulb-medial prefrontal cortex circuit may induce anxiety-like behavior in allergic rhinitis. PLoS One 2019; 14:e0221978. [PMID: 31509547 PMCID: PMC6738655 DOI: 10.1371/journal.pone.0221978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease of the upper respiratory tract, which is associated with high incidence of anxiety symptom. There is evidence that medial prefrontal cortex modulates anxiety-related behaviors and receives projections from olfactory bulb. Since olfactory dysfunction has been reported in allergic rhinitis, we aimed to evaluate anxiety-like behavior and oscillations of olfactory bulb-medial prefrontal cortex circuit in an animal model of allergic rhinitis. The number of open arm entries in elevated zero maze was significantly reduced in sensitized rats exposed to intranasal ovalbumin compared to the control group, which was indicating the enhancement of anxiety-like behavior in allergic rhinitis animals. Analysis of local field potentials in olfactory bulb and medial prefrontal cortex during immobility and exploration state showed that anxiety-like behavior induced by allergic rhinitis was in association with increased activity of medial prefrontal cortex and enhancement of olfactory bulb-medial prefrontal cortex coupling in delta and theta bands. Moreover, in allergic rhinitis animals, theta strongly coordinates local gamma activity in olfactory bulb and medial prefrontal cortex, which means to have a strong local theta/gamma coupling. We suggested that disruption of olfactory bulb-medial prefrontal cortex circuit due to allergic reactions might have a governing role for inducing anxiety-like behavior in the allergic rhinitis experimental model.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Parsazadegan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kolsum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|