1
|
Chen J, Du Y, Hou H, Li W, Sun C, Liang F, Wang H. Unveiling the Correlation Between the Membrane Assembly of P-gp and Drug Resistance in Multiple Myeloma Using Super-Resolution Fluorescence Imaging. Anal Chem 2024; 96:11673-11681. [PMID: 38994836 DOI: 10.1021/acs.analchem.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Drug resistance in multiple myeloma (MM) poses a significant challenge to treatment efficacy, primarily attributed to P-glycoprotein (P-gp) dysfunction. This study delves into the elusive spatial organization of P-gp, aiming to enhance our understanding of its role in MM drug resistance by exploring the intricate relationship between molecular function and spatial arrangement. Employing super-resolution imaging of P-gp with the inhibitor probe Tariquidar-TAMR labeling on MM cell membranes, the research uncovered a more pronounced clustering distribution of P-gp in drug-resistant cells (MM1R) compared to drug-sensitive counterparts (MM1S). Further exploration revealed the clustering distribution of P-gp was heightened as cellular drug resistance increased in hypoxic condition, directly emphasizing the strong correlation between P-gp cluster morphology and drug resistance. Additionally, stable P-gp cluster formation was influenced by cross-linking of membrane carbohydrates, and disrupting these glycoprotein clusters could reduce cellular drug resistance, suggesting that altering distribution patterns of P-gp can modulate drug responsiveness. Finally, dexamethasone (Dex) treatment was revealed to enhance P-gp clustering distribution, particularly in MM1S cells, indicating that change degree in P-gp distribution correlate with the modifiable space of cellular drug responsiveness. This study provides insights into the correlation between P-gp assembly and cellular drug responsiveness, deepening our understanding of functional changes in MM drug resistance and offering valuable perspectives for overcoming this challenge.
Collapse
Affiliation(s)
- Junling Chen
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Yuwei Du
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hao Hou
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - WenFeng Li
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Dadao, Wuhan 430022, China
| | - Feng Liang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
2
|
Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines 2024; 12:563. [PMID: 38540176 PMCID: PMC10967781 DOI: 10.3390/biomedicines12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Shaira Gail Santos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carol Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
3
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
4
|
Yang L, Ma C, Zhang L, Zhang M, Li F, Zhang C, Yu X, Wang X, He S, Zhu D, Song Y. 15-Lipoxygenase-2/15(S)-hydroxyeicosatetraenoic acid regulates cell proliferation and metastasis via the STAT3 pathway in lung adenocarcinoma. Prostaglandins Other Lipid Mediat 2018; 138:31-40. [DOI: 10.1016/j.prostaglandins.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/17/2018] [Indexed: 01/24/2023]
|
5
|
Landor SKJ, Lendahl U. The interplay between the cellular hypoxic response and Notch signaling. Exp Cell Res 2017; 356:146-151. [PMID: 28456549 DOI: 10.1016/j.yexcr.2017.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
The ability to sense and adapt to low oxygen levels (hypoxia) is central for most organisms and cell types. At the center of this process is a molecular mechanism, the cellular hypoxic response, in which the hypoxia inducible factors (HIFs) are stabilized by hypoxia, allowing the HIF proteins to act as master transcriptional regulators to adjust the cell to a low oxygen environment. In recent years, it has become increasingly appreciated that the cellular hypoxic response does not always operate in splendid isolation, but intersects with signaling mechanisms such as Notch signaling, a key regulatory signaling mechanism operating in most cell types controlling stem cell maintenance and differentiation. In this review, which is dedicated to the memory of Lorenz Poellinger,1 we discuss how the intersection between Notch and the cellular hypoxic response was discovered and our current understanding of the molecular basis for the cross-talk. We also provide examples of where Notch and hypoxia intersect in various physiological and disease contexts.
Collapse
Affiliation(s)
- Sebastian K-J Landor
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; Department of Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; Department of Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
6
|
Karakashev SV, Reginato MJ. Hypoxia/HIF1α induces lapatinib resistance in ERBB2-positive breast cancer cells via regulation of DUSP2. Oncotarget 2015; 6:1967-80. [PMID: 25596742 PMCID: PMC4385829 DOI: 10.18632/oncotarget.2806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
ERBB2/HER2 belongs to the EGFR-family of receptor tyrosine kinases and its overexpression can promote tumor progression. Breast cancer patients with ERBB2 amplifications are currently treated with lapatinib, a small-molecule kinase inhibitor that specifically blocks EGFR/ERBB2 signaling. Here, we show that hypoxia, via HIF-1, induces resistance to lapatinib-mediated effects in ERBB2-expressing mammary epithelial and ERBB2-positive breast cancer cells. Lapatinib-mediated growth inhibition and apoptosis in three-dimensional (3D) cultures are decreased under hypoxic conditions. Hypoxia can maintain activation of signaling pathways downstream from ERBB2 including AKT and ERK in the presence of lapatinib. HIF-1 is both required and sufficient to induce lapatinib resistance as overexpression of stable HIF-1 in ERBB2-expressing cells blocks lapatinib-mediated effects and maintains ERBB2-downstream signaling under normoxic conditions. Under hypoxia, activation of ERK signaling is required for lapatinib resistance as treatment with MEK inhibitor trametinib reverses hypoxia-mediated lapatinib resistance. HIF-1 can bypass the lapatinib-treated inhibition of the ERK pathway via inhibition of the dual-specificity phosphatase 2 (DUSP2). Indeed, overexpression of DUSP2 in ErbB2-positve breast cancer cells reverses hypoxia-mediated lapatinib resistance. Thus, our results provide rationale for therapeutic evaluation of the treatment of hypoxic ERBB2 expressing breast tumors with a combination of lapatinib and MEK inhibitors.
Collapse
Affiliation(s)
- Sergey V Karakashev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
7
|
Co-treatment with therapeutic neural stem cells expressing carboxyl esterase and CPT-11 inhibit growth of primary and metastatic lung cancers in mice. Oncotarget 2015; 5:12835-48. [PMID: 25544747 PMCID: PMC4350335 DOI: 10.18632/oncotarget.2547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
In this study, neural stem cells (NSCs)-derived enzyme/prodrug therapy (NDEPT) was used to treat primary lung cancer or metastatic lung cancer in the brain. To confirm the anti-tumor effect of NSCs expressing carboxyl esterase (CE), A549 lung cancer cells were treated with HB1.F3.CE cells and CPT-11. A significant decrease in the viability/proliferation of lung cancer cells was observed compared to negative controls or cells treated with CPT-11 alone. To produce a mouse model of primary lung cancer or lung cancer metastasis to the brain, A549 cells were implanted in the dorsal area of the mouse or right hemisphere. CM-DiI pre-stained stem cells were implanted near the primary lung cancer tumor mass or in the contralateral brain. Two days after stem cells injection, mice were inoculated with CPT-11 (13.5 kg/mouse/day) via intraperitoneal injection. In the primary lung cancer mouse models, tumor mass was 80% lower in response to HB1.F3.CE in conjunction with CPT-11, while it was only reduced by 40% in the group treated with CPT-11 alone. Additionally, therapeutic efficacy of co-treatment with stem cells and CPT-11 was confirmed by detection of apoptosis and necrosis in primary and metastatic lung cancer tissues. By secreting VEGF, tumor cells modulate Erk1/2 and Akt signaling and migration of stem cells. This further increased tumor-selectivity of stem cell/prodrug co-therapy. Overall, these results indicate that NSCs expressing the therapeutic gene may be a powerful tool for treatment of primary lung cancer or metastasis of lung cancer to the brain.
Collapse
|
8
|
Barse L, Bocchetta M. Non-small-cell lung carcinoma: role of the Notch signaling pathway. LUNG CANCER (AUCKLAND, N.Z.) 2015; 6:43-53. [PMID: 28210150 PMCID: PMC5217522 DOI: 10.2147/lctt.s60329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notch signaling plays a pivotal role during embryogenesis. It regulates three fundamental processes: lateral inhibition, boundary formation, and lineage specification. During post-natal life, Notch receptors and ligands control critical cell fate decisions both in compartments that are undergoing differentiation and in pluripotent progenitor cells. First recognized as a potent oncogene in certain lymphoblastic leukemias and mesothelium-derived tissue, the role of Notch signaling in epithelial, solid tumors has been far more controversial. The overall consequence of Notch signaling and which form of the Notch receptor drives malignancy in humans is deeply debated. Most likely, this is due to the high degree of context-dependent effects of Notch signaling. More recently, it has been discovered that Notch (especially Notch-1) can exert different, even opposite effects in the same tissue under differing microenvironmental conditions. Further complicating the understanding of Notch receptors is the recently discovered role for non-canonical Notch signaling. Additionally, the most frequent Notch signaling antagonists used in biological systems have been inhibitors of the transmembrane protease complex γ-secretase, which itself processes a plethora of class one transmembrane proteins and thus cannot be considered a Notch-specific upstream regulator. Here we review the available empirical evidence gathered in recent years concerning Notch receptors and ligands in non-small-cell lung carcinoma (NSCLC). Although an overview of the field reveals seemingly contradicting results, we propose that Notch signaling can be exploited as a therapeutic target in NSCLC and represents a promising complement to the current arsenal utilized to combat this malignancy, particularly in targeting NSCLC tissues under specific environmental conditions, such as hypoxia.
Collapse
Affiliation(s)
- Levi Barse
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| | - Maurizio Bocchetta
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
9
|
Sobol A, Galluzzo P, Weber MJ, Alani S, Bocchetta M. Depletion of Amyloid Precursor Protein (APP) causes G0 arrest in non-small cell lung cancer (NSCLC) cells. J Cell Physiol 2015; 230:1332-41. [PMID: 25502341 DOI: 10.1002/jcp.24875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/05/2014] [Indexed: 01/24/2023]
Abstract
We recently reported that Amyloid Precursor Protein (APP) regulates global protein synthesis in a variety of human dividing cells, including non-small cell lung cancer (NSCLC) cells. More specifically, APP depletion causes an increase of both cap- and IRES-dependent translation. Since growth and proliferation are tightly coupled processes, here, we asked what effects artificial downregulation of APP could have elicited in NSCLC cells proliferation. APP depletion caused a G0/G1 arrest through destabilization of the cyclin-C protein and reduced pRb phosphorylation at residues Ser802/811. siRNA to cyclin-C mirrored the cell cycle distribution observed when silencing APP. Cells arrested in G0/G1 (and with augmented global protein synthesis) increased their size and underwent a necrotic cell death due to cell membrane permeabilization. These phenotypes were reversed by overexpression of the APP C-terminal domain, indicating a novel role for APP in regulating early cell cycle entry decisions. It is seems that APP moderates the rate of protein synthesis before the cell clears growth factors- and nutrients-dependent checkpoint in mid G1. Our results raise questions on how such processes interact in the context of (at least) dividing NSCLC cells. The data presented here suggest that APP, although required for G0/G1 transitions, moderates the rate of protein synthesis before the cell fully commits to cell cycle progression following mechanisms, which seem additional to concurrent signals deriving from the PI3-K/Akt/mTORC-1 axis. APP appears to play a central role in regulating cell cycle entry with the rate of protein synthesis; and its loss-of-function causes cell size abnormalities and death.
Collapse
Affiliation(s)
- Anna Sobol
- Department of Pathology, Loyola University Chicago Medical Center, Oncology Institute, Maywood, Illinois
| | | | | | | | | |
Collapse
|
10
|
Sobol A, Galluzzo P, Liang S, Rambo B, Skucha S, Weber MJ, Alani S, Bocchetta M. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells. J Cell Physiol 2015; 230:1064-74. [PMID: 25283437 PMCID: PMC4445069 DOI: 10.1002/jcp.24835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/22/2014] [Indexed: 02/02/2023]
Abstract
Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Sobol
- Department of Pathology, Oncology Institute, Loyola University Chicago Medical Center, Maywood, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen J, Ding Z, Peng Y, Pan F, Li J, Zou L, Zhang Y, Liang H. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS One 2014; 9:e98882. [PMID: 24901645 PMCID: PMC4047061 DOI: 10.1371/journal.pone.0098882] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Background Multidrug resistance (MDR) is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1) and the multidrug resistance (MDR1) gene/transporter P-glycoprotein (P-gp) remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α. Methods A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS). The apoptotic level induced by different drugs was examined by flow cytometry (FCM). Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP). The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed. Results The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression. Conclusions HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA Interference
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Jianfang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhenyu Ding
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Oncology, General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| | - Yonghai Peng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feng Pan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lan Zou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanling Zhang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
12
|
Ma J, Zhang L, Zhang J, Liu M, Wei L, Shen T, Ma C, Wang Y, Chen Y, Zhu D. 15-lipoxygenase-1/15-hydroxyeicosatetraenoic acid promotes hepatocellular cancer cells growth through protein kinase B and heat shock protein 90 complex activation. Int J Biochem Cell Biol 2013; 45:1031-41. [PMID: 23474367 DOI: 10.1016/j.biocel.2013.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/05/2013] [Accepted: 02/24/2013] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma is a typical hypervascular tumor resulted from excessive growth of tumor cells. Previous studies have demonstrated that the lipoxygenase is considered as a potential therapeutic target and have important influence on human cancers. However, whether the 15-lipoxygenase-1 (15-LO-1)/15-hydroxyeicosatetraenoic acid (15-HETE) pathway participates in the development and progression of hepatocellular carcinoma has not been reported until now. To test the hypothesis that the 15-LO-1/15-HETE signaling regulates hepatocellular carcinoma cells growth and metastasis via the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/heat shock protein 90 pathway, we performed these studies. Our results showed that hepatocellular carcinoma cell lines (HepG2 and SMMC7721) apoptosis and growth arrest occurred following blockade of the 15-LO pathway with a 15-LO-1 inhibitor or siRNA, and all the effects were reversed by exogenous 15-HETE. Meanwhile, 15-HETE strengthened the expression of phosphor-Akt and heat shock protein 90, and inhibited apoptosis induced by serum deprivation via promoting the interaction of Akt with heat shock protein 90. In addition, the invasion and migration of HepG2 enhanced by 15-HETE were both attenuated by the inhibitor of Akt or heat shock protein 90. These results indicate that the 15-LO-1/15-HETE pathway prevents hepatocellular carcinoma cells from apoptosis and promotes hepatocellular carcinoma progression via a specific intracellular signaling pathway centered by the interaction of Akt with heat shock protein 90, and suggest a new therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|