1
|
Kazemi M, Williams JL. Properties of Cartilage-Subchondral Bone Junctions: A Narrative Review with Specific Focus on the Growth Plate. Cartilage 2021; 13:16S-33S. [PMID: 32458695 PMCID: PMC8804776 DOI: 10.1177/1947603520924776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The purpose of this narrative review is to summarize what is currently known about the structural, chemical, and mechanical properties of cartilage-bone interfaces, which provide tissue integrity across a bimaterial interface of 2 very different structural materials. Maintaining these mechanical interfaces is a key factor for normal bone growth and articular cartilage function and maintenance. MATERIALS AND METHODS A comprehensive search was conducted using Google Scholar and PubMed/Medline with a specific focus on the growth plate cartilage-subchondral bone interface. All original articles, reviews in journals, and book chapters were considered. Following a review of the overall structural and functional characteristics of the physis, the literature on histological studies of both articular and growth plate chondro-osseous junctions is briefly reviewed. Next the literature on biochemical properties of these interfaces is reviewed, specifically the literature on elemental analyses across the cartilage-subchondral bone junctions. The literature on biomechanical studies of these junctions at the articular and physeal interfaces is also reviewed and compared. RESULTS Unlike the interface between articular cartilage and bone, growth plate cartilage has 2 chondro-osseous junctions. The reserve zone of the mature growth plate is intimately connected to a plate of subchondral bone on the epiphyseal side. This interface resembles that between the subchondral bone and articular cartilage, although much less is known about its makeup and formation. CONCLUSION There is a notably paucity of information available on the structural and mechanical properties of reserve zone-subchondral epiphyseal bone interface. This review reveals that further studies are needed on the microstructural and mechanical properties of chondro-osseous junction with the reserve zone.
Collapse
Affiliation(s)
- Masumeh Kazemi
- Biomedical Engineering Department,
University of Memphis, Memphis, TN, USA,Masumeh Kazemi, Biomedical Engineering
Department, University of Memphis, 3796 Norriswood Avenue, Memphis, TN 38152,
USA.
| | | |
Collapse
|
2
|
Li C, Ouyang L, Pence IJ, Moore AC, Lin Y, Winter CW, Armstrong JPK, Stevens MM. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900291. [PMID: 30844123 PMCID: PMC6606439 DOI: 10.1002/adma.201900291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/18/2019] [Indexed: 05/25/2023]
Abstract
The controlled fabrication of gradient materials is becoming increasingly important as the next generation of tissue engineering seeks to produce inhomogeneous constructs with physiological complexity. Current strategies for fabricating gradient materials can require highly specialized materials or equipment and cannot be generally applied to the wide range of systems used for tissue engineering. Here, the fundamental physical principle of buoyancy is exploited as a generalized approach for generating materials bearing well-defined compositional, mechanical, or biochemical gradients. Gradient formation is demonstrated across a range of different materials (e.g., polymers and hydrogels) and cargos (e.g., liposomes, nanoparticles, extracellular vesicles, macromolecules, and small molecules). As well as providing versatility, this buoyancy-driven gradient approach also offers speed (<1 min) and simplicity (a single injection) using standard laboratory apparatus. Moreover, this technique is readily applied to a major target in complex tissue engineering: the osteochondral interface. A bone morphogenetic protein 2 gradient, presented across a gelatin methacryloyl hydrogel laden with human mesenchymal stem cells, is used to locally stimulate osteogenesis and mineralization in order to produce integrated osteochondral tissue constructs. The versatility and accessibility of this fabrication platform should ensure widespread applicability and provide opportunities to generate other gradient materials or interfacial tissues.
Collapse
Affiliation(s)
- Chunching Li
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Liliang Ouyang
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Isaac J. Pence
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Axel C. Moore
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Charles W. Winter
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - James P. K. Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Li C, Armstrong JP, Pence IJ, Kit-Anan W, Puetzer JL, Correia Carreira S, Moore AC, Stevens MM. Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials 2018; 176:24-33. [PMID: 29852377 PMCID: PMC6018621 DOI: 10.1016/j.biomaterials.2018.05.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
In developmental biology, gradients of bioactive signals direct the formation of structural transitions in tissue that are key to physiological function. Failure to reproduce these native features in an in vitro setting can severely limit the success of bioengineered tissue constructs. In this report, we introduce a facile and rapid platform that uses magnetic field alignment of glycosylated superparamagnetic iron oxide nanoparticles, pre-loaded with growth factors, to pattern biochemical gradients into a range of biomaterial systems. Gradients of bone morphogenetic protein 2 in agarose hydrogels were used to spatially direct the osteogenesis of human mesenchymal stem cells and generate robust osteochondral tissue constructs exhibiting a clear mineral transition from bone to cartilage. Interestingly, the smooth gradients in growth factor concentration gave rise to biologically-relevant, emergent structural features, including a tidemark transition demarcating mineralized and non-mineralized tissue and an osteochondral interface rich in hypertrophic chondrocytes. This platform technology offers great versatility and provides an exciting new opportunity for overcoming a range of interfacial tissue engineering challenges.
Collapse
Affiliation(s)
- Chunching Li
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - James Pk Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Isaac J Pence
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Worrapong Kit-Anan
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Jennifer L Puetzer
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Sara Correia Carreira
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Axel C Moore
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
4
|
Fung CH, Cheung WH, Pounder NM, Harrison A, Leung KS. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors. ULTRASONICS 2014; 54:1358-1365. [PMID: 24560187 DOI: 10.1016/j.ultras.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/17/2014] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
Low intensity pulsed ultrasound (LIPUS) was reported to accelerate the rate of fracture healing. When LIPUS is applied to fractures transcutaneously, bone tissues at different depths are exposed to different ultrasound fields. Measurement of LIPUS shows pressure variations in near field (nearby transducer); uniform profile was found beyond it (far field). Moreover, we have reported that the therapeutic effect of LIPUS is dependent on the axial distance of ultrasound beam in rat fracture model. However, the mechanisms of how different axial distances of LIPUS influence the mechanotransduction of bone cells are not understood. To understand the cellular mechanisms underlying far field LIPUS on enhanced fracture healing in rat model, the present study investigated the effect of ultrasound axial distances on (1) osteocyte, the mechanosensor, and (2) mechanotransduction between osteocyte and pre-osteoblast (bone-forming cell) through paracrine signaling. We hypothesized that far field LIPUS could enhance the osteogenic activities of osteoblasts via paracrine factors secreted from osteocytes. The objective of this study was to investigate the effect of axial distances of LIPUS on osteocytes and osteocyte-osteoblast mechanotransduction. In this study, LIPUS (plane; 2.2 cm in diameter, 1.5MHz sine wave, ISATA=30 mW/cm(2)) was applied to osteocytes (mechanosensor) at three axial distances: 0mm (near field), 60mm (mid-near field) and 130 mm (far field). The conditioned medium of osteocytes (OCM) collected from these three groups were used to culture pre-osteoblasts (effector cell). In this study, (1) the direct effect of ultrasound fields on the mechanosensitivity of osteocytes; and (2) the osteogenic effect of different OCM treatments on pre-osteoblasts were assessed. The immunostaining results indicated the ultrasound beam at far field resulted in more β-catenin nuclear translocation in osteocytes than all other groups. This indicated that osteocytes could detect the acoustic differences of LIPUS at various axial distances. Furthermore, we found that the soluble factors secreted by far field LIPUS exposed osteocytes could further promote pre-osteoblasts cell migration, maturation (transition of cell proliferation into osteogenic differentiation), and matrix calcification. In summary, our results of this present study indicated that axial distance beyond near field could transmit ultrasound energy to osteocyte more efficiently. The LIPUS exposed osteocytes conveyed mechanical signals to pre-osteoblasts and regulated their osteogenic cellular activities via paracrine factors secretion. The soluble factors secreted by far field exposed osteocytes led to promotion in migration and maturation in pre-osteoblasts. This finding demonstrated the positive effects of far field LIPUS on stimulating osteocytes and promoting mechanotransduction between osteocytes and osteoblasts.
Collapse
Affiliation(s)
- Chak-Hei Fung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Neill M Pounder
- Orthopaedic Trauma and Clinical Therapies, Smith and Nephew, Inc., Durham, NC 27703, United States
| | - Andrew Harrison
- Orthopaedic Trauma and Clinical Therapies, Smith and Nephew, Inc., Durham, NC 27703, United States
| | - Kwok-Sui Leung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
5
|
Hollenstein J, Terrier A, Cory E, Chen AC, Sah RL, Pioletti DP. Mechanical evaluation of a tissue-engineered zone of calcification in a bone-hydrogel osteochondral construct. Comput Methods Biomech Biomed Engin 2013; 18:332-7. [PMID: 23706035 DOI: 10.1080/10255842.2013.794898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone-hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone-hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone-hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone-hydrogel interface and second, it reduces the stress at this interface.
Collapse
Affiliation(s)
- Jérôme Hollenstein
- a Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Balcom NT, Berg-Johansen B, Dills KJ, Van Donk JR, Williams GM, Chen AC, Hazelwood SJ, Sah RL, Klisch SM. In vitro articular cartilage growth with sequential application of IGF-1 and TGF-β1 enhances volumetric growth and maintains compressive properties. J Biomech Eng 2012; 134:031001. [PMID: 22482681 DOI: 10.1115/1.4005851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitro cultures with insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1) have previously been shown to differentially modulate the growth of immature bovine articular cartilage. IGF-1 stimulates expansive growth yet decreases compressive moduli and increases compressive Poisson's ratios, whereas TGF-β1 maintains tissue size, increases compressive moduli, and decreases compressive Poisson's ratios. The current study's hypothesis was that sequential application of IGF-1 and TGF-β1 during in vitro culture produces geometric and compressive mechanical properties that lie between extreme values produced when using either growth factor alone. Immature bovine articular cartilage specimens were harvested and either untreated (D0, i.e., day zero) or cultured in vitro for either 6 days with IGF-1 (D6 IGF), 12 days with IGF-1 (D12 IGF), or 6 days with IGF-1 followed by 6 days with TGF-β1 (D12 SEQ, i.e., sequential). Following treatment, all specimens were tested for geometric, biochemical, and compressive mechanical properties. Relative to D0, D12 SEQ treatment enhanced volumetric growth, but to a lower value than that for D12 IGF. Furthermore, D12 SEQ treatment maintained compressive moduli and Poisson's ratios at values higher and lower, respectively, than those for D12 IGF. Considering the previously described effects of 12 days of treatment with TGF-β1 alone, D12 SEQ induced both growth and mechanical property changes between those produced with either IGF-1 or TGF-β1 alone. The results suggest that it may be possible to vary the durations of select growth factors, including IGF-1 and TGF-β1, to more precisely modulate the geometric, biochemical, and mechanical properties of immature cartilage graft tissue in clinical repair strategies.
Collapse
Affiliation(s)
- Nathan T Balcom
- Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|