1
|
Murata K, Sakakida T, Kawabata S, Yokoyama M, Morishita Y, Kita S, Kubota K, Kano T, Kojima T, Terada H, Takasu C, Kanemura N. The effect of orthosis management on joint instability in knee joint disease: A systematic review. Prosthet Orthot Int 2024; 48:400-411. [PMID: 37708343 DOI: 10.1097/pxr.0000000000000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Joint instability is a common finding of clinical importance in patients with knee disease. This literature review aimed to examine the evidence regarding the effect of orthosis management on joint instability in knee joint disease. METHODS The detailed protocol for this study was published in the International Prospective Register of Systematic Reviews in the field of health and social welfare (CRD 42022335360). A literature search was conducted on May 2023, using the following databases: Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Physiotherapy Evidence Database (PEDro), and Institute of Electrical and Electronics Engineers (IEEE) Xplore. A secondary search was manually conducted using Google Scholar to address publication bias. Each database search strategy was described, and the search was conducted by independent reviewers. RESULTS A total of 281 studies were retrieved, 11 articles were included in the systematic review. Of the 11 articles selected, the number of included diseases was 2 for osteoarthritis, 7 for anterior cruciate ligament injuries, and 3 for posterior cruciate ligament injuries. In result, orthosis management may improve self-reported instability and functional assessment in patients with osteoarthritis, anterior cruciate ligament injury, and posterior cruciate ligament injury. However, an objective evaluation of anatomical instability did not indicate an improvement in joint instability. CONCLUSION The effects of orthosis management on knee instability might improve physical function and self-reported instability.
Collapse
Affiliation(s)
- Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Takuma Sakakida
- Department of Rehabilitation, Izumi Rehabilitation Hospital, Chiba, Japan
| | - Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Moeka Yokoyama
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuri Morishita
- Department of Rehabilitation, Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| | - Shunsuke Kita
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Keisuke Kubota
- Research Development Center, Saitama Prefectural University, Saitama, Japan
| | - Takuma Kano
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Takuma Kojima
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Hidenobu Terada
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Chiharu Takasu
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| |
Collapse
|
2
|
Du X, Fan R, Kong J. What improvements do general exercise training and traditional Chinese exercises have on knee osteoarthritis? A narrative review based on biological mechanisms and clinical efficacy. Front Med (Lausanne) 2024; 11:1395375. [PMID: 38841568 PMCID: PMC11150680 DOI: 10.3389/fmed.2024.1395375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Knee osteoarthritis (KOA) is a disease that significantly affects the quality of life of patients, with a complex pathophysiology that includes degeneration of cartilage and subchondral bone, synovitis, and associations with mechanical load, inflammation, metabolic factors, hormonal changes, and aging. Objective This article aims to comprehensively review the biological mechanisms and clinical effects of general exercise training and traditional Chinese exercises (such as Tai Chi and Qigong) on the treatment of KOA, providing references for the development of clinical exercise prescriptions. Methods A systematic search of databases including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI) was conducted, reviewing studies including randomized controlled trials (RCTs), observational studies, systematic reviews, and meta-analyses. Keywords included "knee osteoarthritis," "exercise therapy," "physical activity," and "traditional Chinese exercise." Results and conclusion General exercise training positively affects KOA by mechanisms such as promoting blood circulation, improving the metabolism of inflammatory factors, enhancing the expression of anti-inflammatory cytokines, and reducing cartilage cell aging. Traditional Chinese exercises, like Tai Chi and Qigong, benefit the improvement of KOA symptoms and tissue repair by regulating immune function and alleviating joint inflammation. Clinical studies have shown that both types of exercise can improve physical function, quality of life, and pain relief in patients with KOA. Both general exercise training and traditional Chinese exercises are non-pharmacological treatment options for KOA that can effectively improve patients' physiological function and quality of life. Future research should further explore the long-term effects and biological mechanisms of these exercise interventions and develop personalized exercise programs based on the specific needs of patients.
Collapse
Affiliation(s)
- Xingbin Du
- Shandong Huayu University of Technology, Dezhou, China
- Faculty of Education, Qufu Normal University, Qufu, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Qufu, China
| | - Jianda Kong
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
3
|
Kaneguchi A, Masuhara N, Okahara R, Doi Y, Yamaoka K, Umehara T, Ozawa J. Long-term effects of non-weight bearing and immobilization after anterior cruciate ligament reconstruction on joint contracture formation in rats. Connect Tissue Res 2024; 65:187-201. [PMID: 38517297 DOI: 10.1080/03008207.2024.2331567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Non-weight bearing improves and immobilization worsens contracture induced by anterior cruciate ligament reconstruction (ACLR), but effect persistence after reloading and remobilization remains unclear, and the combined effects of these factors on ACLR-induced contracture are unknown. We aimed to determine 1) whether the effects of short-term (2-week) non-weight bearing or immobilization after ACLR on contracture would be sustained by reloading or remobilization during a 10-week observation period, and 2) how the combination of both interventions compared to the outcome of either alone. METHODS We divided 88 ACL-reconstructed male rats into four groups: non-intervention, non-weight bearing, joint immobilization, and both interventions. Interventions were performed for 2 weeks, followed by rearing without intervention. Twelve untreated rats were used as controls. At 2, 4, and 12 weeks post-surgery, we assessed range of motion (ROM) and histological changes. RESULTS ACLR resulted in persistent loss of ROM, accompanied by synovial shortening, capsule thickening, and osteophyte formation. Two weeks of non-weight bearing increased ROM and reduced osteophyte size, but the beneficial effects disappeared within 10 weeks after reloading. Two-week immobilization decreased ROM and facilitated synovial shortening. After remobilization, ROM partially recovered but remained below non-intervention levels at 12 weeks. When both interventions were combined, ROM was similar to immobilization alone. CONCLUSIONS The beneficial effects of 2-week non-weight bearing on contracture diminished within 10 weeks after reloading. The adverse effects of 2-week immobilization on contracture persisted after 10 weeks of remobilization. The effects of the combined use of both interventions on contracture were primarily determined by immobilization.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanami Masuhara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Okahara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yoshika Doi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
4
|
Kaneguchi A, Kanehara M, Yamaoka K, Umehara T, Ozawa J. Effects of sex differences on osteoarthritic changes after anterior cruciate ligament reconstruction in rats. Acta Histochem 2024; 126:152172. [PMID: 38943867 DOI: 10.1016/j.acthis.2024.152172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The prevalence of primary osteoarthritis is higher in females than males. However, it remains unclear if there are sex differences in the incidence of post-traumatic osteoarthritis after anterior cruciate ligament (ACL) reconstruction. In this study, we aimed to investigate the effects of sex on osteoarthritic changes after ACL reconstruction using an animal model. Rats were divided into the following four groups: male control, male ACL reconstruction, female control, and female ACL reconstruction. ACL reconstruction surgery was performed on the right knees of rats in the ACL reconstruction groups, while rats in the control groups did not undergo knee surgery. At 1, 4, and 12 weeks after surgery, cartilage degeneration in the medial tibial plateau and osteophyte formation in the proximal tibia were histologically assessed. After ACL reconstruction, an increase in the Mankin score, cartilage fissures, and osteophyte formation were detected within 12 weeks in both male and female rats, with similar degrees of these changes between males and females. However, changes in cartilage thickness and chondrocyte density after ACL reconstruction differed between males and females. Cartilage thickening was observed in male rats but not in female rats. The increase in chondrocyte density in the anterior region was detected in both males and females but was more pronounced in female rats. In conclusion, osteoarthritic changes were observed after ACL reconstruction in both male and female rats, but differences in changes in cartilage thickness and chondrocyte density were observed between males and females.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Marina Kanehara
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
5
|
Lin YY, Christiansen BA. Non-Invasive Compression-Induced Anterior Cruciate Ligament (ACL) Injury and In Vivo Imaging of Protease Activity in Mice. J Vis Exp 2023:10.3791/65249. [PMID: 37843296 PMCID: PMC10680551 DOI: 10.3791/65249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Traumatic joint injuries such as anterior cruciate ligament (ACL) rupture or meniscus tears commonly lead to post-traumatic osteoarthritis (PTOA) within 10-20 years following injury. Understanding the early biological processes initiated by joint injuries (e.g., inflammation, matrix metalloproteinases (MMPs), cathepsin proteases, bone resorption) is crucial for understanding the etiology of PTOA. However, there are few options for in vivo measurement of these biological processes, and the early biological responses may be confounded if invasive surgical techniques or injections are used to initiate OA. In our studies of PTOA, we have used commercially available near-infrared protease activatable probes combined with fluorescence reflectance imaging (FRI) to quantify protease activity in vivo following non-invasive compression-induced ACL injury in mice. This non-invasive ACL injury method closely recapitulates clinically relevant injury conditions and is completely aseptic since it does not involve disrupting the skin or the joint capsule. The combination of these injury and imaging methods allows us to study the time course of protease activity at multiple time points following a traumatic joint injury.
Collapse
Affiliation(s)
- Yu-Yang Lin
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health
| | - Blaine A Christiansen
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health;
| |
Collapse
|
6
|
Microstructural and histomorphological features of osteophytes in late-stage human knee osteoarthritis with varus deformity. Joint Bone Spine 2022; 89:105353. [DOI: 10.1016/j.jbspin.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
|
7
|
Oka Y, Murata K, Kano T, Ozone K, Arakawa K, Kokubun T, Kanemura N. Impact of Controlling Abnormal Joint Movement on the Effectiveness of Subsequent Exercise Intervention in Mouse Models of Early Knee Osteoarthritis. Cartilage 2021; 13:1334S-1344S. [PMID: 31718284 PMCID: PMC8804869 DOI: 10.1177/1947603519885007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Moderate mechanical stress is necessary for preserving the cartilage. The clinician empirically understands that prescribing only exercise will progress osteoarthritis (OA) for knee OA patients with abnormal joint movement. When prescribing exercise for OA, we hypothesized that degeneration of articular cartilage could be further prevented by combining interventions with the viewpoint of normalizing joint movement. DESIGN Twelve-week-old ICR mice underwent anterior cruciate ligament transection (ACL-T) surgery in their right knee and divided into 4 groups: ACL-T, controlled abnormal joint movement (CAJM), ACL-T with exercise (ACL-T/Ex), CAJM with exercise (CAJM/Ex). Animals in the walking group were subjected to treadmill exercise 6 weeks after surgery, which included walking for 18 m/min, 30 min/d, 3 d/wk for 4 weeks. Joint instability was measured by anterior drawer test, and safranin-O staining and immunohistochemical staining were performed. RESULTS OARSI (Osteoarthritis Research Society International) score of ACL-T/Ex group showed highest among 4 groups (P < 0.001). And CAJM/Ex group was lower than ACL-T/Ex group. Positive cell ratio of IL-1β and MMP-13 in CAJM/Ex group was lower than ACL-T/Ex group (P < 0.05). CONCLUSIONS We found that the state of the intra-articular environment can greatly influence the effect of exercise on cartilage degeneration, even if exercise is performed under the same conditions. In the CAJM/Ex group where joint movement was normalized, abnormal mechanical stress such as shear force and compression force accompanying ACL cutting was alleviated. These findings may highlight the need to consider an intervention to correct abnormal joint movement before prescribing physical exercise in the treatment of OA.
Collapse
Affiliation(s)
- Yuichiro Oka
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy,
Health and Social Services, Saitama Prefectural University, Koshigaya,
Saitama, Japan
| | - Takuma Kano
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Kaichi Ozone
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Kohei Arakawa
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Takanori Kokubun
- Department of Physical Therapy,
Health and Social Services, Saitama Prefectural University, Koshigaya,
Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy,
Health and Social Services, Saitama Prefectural University, Koshigaya,
Saitama, Japan,Naohiko Kanemura, Department of
Physical Therapy, Health and Social Services, Saitama Prefectural
University, 820 Sannomiya, Koshigaya, Saitama 343-8540, Japan.
| |
Collapse
|
8
|
Treadmill Exercise after Controlled Abnormal Joint Movement Inhibits Cartilage Degeneration and Synovitis. Life (Basel) 2021; 11:life11040303. [PMID: 33915911 PMCID: PMC8066168 DOI: 10.3390/life11040303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cartilage degeneration is the main pathological component of knee osteoarthritis (OA), but no effective treatment for its control exists. Although exercise can inhibit OA, the abnormal joint movement with knee OA must be managed to perform exercise. Our aims were to determine how controlling abnormal joint movement and treadmill exercise can suppress cartilage degeneration, to analyze the tissues surrounding articular cartilage, and to clarify the effect of treatment. Twelve-week-old ICR mice (n = 24) underwent anterior cruciate ligament transection (ACL-T) surgery on their right knees and were divided into three groups as follows: ACL-T, animals in the walking group subjected to ACL-T; controlled abnormal joint movement (CAJM), and CAJM with exercise (CAJM + Ex) (n = 8/group). Walking-group animals were subjected to treadmill exercise 6 weeks after surgery, including walking for 18 m/min, 30 min/day, 3 days/week for 8 weeks. Safranin-O staining, hematoxylin-eosin staining, and immunohistochemical staining were performed. The OARSI (Osteoarthritis research Society international) score was lower in the CAJM group than in the ACL-T group and was even lower in the CAJM + Ex group. The CAJM group had a lower meniscal injury score than the ACL-T group, and the CAJM + Ex group demonstrated a less severe synovitis than the ACL-T and CAJM groups. The observed difference in the perichondrium tissue damage score depending on the intervention method suggests different therapeutic effects, that normalizing joint motion can solve local problems in the knee joint, and that the anti-inflammatory effect of treadmill exercise can suppress cartilage degeneration.
Collapse
|
9
|
Kawabata S, Murata K, Nakao K, Sonoo M, Morishita Y, Oka Y, Kubota K, Kuroo-Nakajima A, Kita S, Nakagaki S, Arakawa K, Kokubun T, Kanemura N. Effects of exercise therapy on joint instability in patients with osteoarthritis of the knee: A systematic review. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100114. [PMID: 36474882 PMCID: PMC9718293 DOI: 10.1016/j.ocarto.2020.100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Objective Abnormal load stress caused by joint instability has been reported to be one of the factors responsible for the development of osteoarthritis (OA). However, few studies have investigated the efficacy of exercise therapy for patients with knee instability-induced OA, and there are no specific treatment guidelines or effects for this form of OA. Therefore, the purpose of this study was to examine the effect of exercise treatments for joint instability in patients with knee OA by a systematic review. Design Systematic review. Results Searches in three databases, PubMed, Cochrane, and the Physiotherapy Evidence Database, yielded 14 articles that were scrutinized, and 6 articles that met the inclusion criteria were selected. Conclusions Exercise therapy focusing on joint instability, including muscle maintenance and strength training, and specific training targeting knee instability have no additional beneficial effects on knee joint instability. However, because of the benefits of treatment protocols based on patient attributes in exercise treatment focused on joint instability, it is necessary to investigate the effects in more detail in the future.
Collapse
Affiliation(s)
- Sora Kawabata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Kouki Nakao
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Moeka Sonoo
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Yuri Morishita
- Department of Rehabilitation, Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| | - Yuichiro Oka
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Keisuke Kubota
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Aya Kuroo-Nakajima
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Shunsuke Kita
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Sumika Nakagaki
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Kohei Arakawa
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| |
Collapse
|
10
|
Rabelo GD, Vom Scheidt A, Klebig F, Hemmatian H, Citak M, Amling M, Busse B, Jähn K. Multiscale bone quality analysis in osteoarthritic knee joints reveal a role of the mechanosensory osteocyte network in osteophytes. Sci Rep 2020; 10:673. [PMID: 31959806 PMCID: PMC6971279 DOI: 10.1038/s41598-019-57303-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Osteophytes - bony outgrowths on joint structures - are found in healthy individuals but are specifically present in late osteoarthritis (OA). Osteophyte development and function is not well understood, yet biomechanical stimuli are thought to be critical. Bone adapts to mechanical forces via the cellular network of osteocytes. The involvement of osteocytes in osteophyte formation and maturation has not been unravelled. Forty-three osteophytes from tibias of 23 OA patients (65 ± 9 years) were analysed. The trabecular bone structure of osteophytes presented with fewer trabeculae of lower bone mineral density compared to subchondral bone. We identified 40% early stage and 60% late stage osteophytes that significantly differed in their trabecular bone characteristics. Osteophyte bone revealed a higher number of osteocytes and a lower number of empty osteocyte lacunae per bone area than the subchondral bone. We found that OA osteophytes consist of younger bone material comprised of woven and lamellar bone with the capacity to develop into a late stage osteophyte potentially via the involvement of the osteocyte network. Our analysis of OA osteophytes implies a transition from woven to lamellar bone as in physiological bone growth within a pathological joint. Therefore, osteophyte development and growth present a valuable research subject when aiming to investigate the osteogenic signalling cascade.
Collapse
Affiliation(s)
- Gustavo Davi Rabelo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Onitsuka K, Murata K, Kokubun T, Fujiwara S, Nakajima A, Morishita Y, Kanemura N. Effects of Controlling Abnormal Joint Movement on Expression of MMP13 and TIMP-1 in Osteoarthritis. Cartilage 2020; 11:98-107. [PMID: 29938527 PMCID: PMC6921957 DOI: 10.1177/1947603518783449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Abnormal joint movement is associated with osteoarthritis (OA). Previous studies using the controlling abnormal joint movement (CAJM) model of OA reported delayed cartilage degeneration; however, none of them focused on gait performance and the localization of matrix metalloproteinase 13 (MMP13) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in chondrocytes. Therefore, we aimed to investigate the effect of controlling abnormal joint movement on gait performance and the localization of MMP13 and TIMP-1, using kinematic and histological analyses. DESIGN Rats were assigned to 2 groups: anterior cruciate ligament transection (ACL-T) group and CAJM group (n = 5/group); contralateral hind limbs of ACL-T rats were designated as intact. After 1, 2, and 4 weeks, step length was analyzed, and after 2, 4, and 8 weeks, Safranin O-Fast Green staining and immunohistochemical staining for MMP13 and TIMP-1 were performed. RESULTS Step length did not differ significantly between the groups. However, degeneration of articular cartilage was higher in the ACL-T group than in the intact group (P < 0.05). There was no significant difference in the CAJM group at all time points. Immunohistochemical analysis of the MMP13/TIMP-1 relationship revealed a significant increase in the expression ratio of MMP13 after 4 weeks in the ACL-T group compared to the CAJM group (P < 0.05). CONCLUSIONS Controlling abnormal joint movement may reduce mechanical stress owing to kinematic elements of small articulation including joint instability and delayed cartilage degeneration, despite the lack of kinematic change in step length.
Collapse
Affiliation(s)
- Katsuya Onitsuka
- Department of Rehabilitation, Tokyo
Women’s Medical University Yachiyo Medical Center, Chiba, Japan
| | - Kenji Murata
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Shuhei Fujiwara
- Graduate Course of Health and Social
Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Aya Nakajima
- Graduate Course of Health and Social
Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Yuri Morishita
- Graduate Course of Health and Social
Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan,Naohiko Kanemura, Department of Physical
Therapy, School of Health and Social Services, Saitama Prefectural University,
820 Sannomiya, Saitama 343-8540, Japan.
| |
Collapse
|
12
|
Hagiwara Y, Dyrna F, Kuntz AF, Adams DJ, Dyment NA. Cells from a GDF5 origin produce zonal tendon-to-bone attachments following anterior cruciate ligament reconstruction. Ann N Y Acad Sci 2020; 1460:57-67. [PMID: 31596513 PMCID: PMC6992521 DOI: 10.1111/nyas.14250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/15/2019] [Indexed: 01/14/2023]
Abstract
Following anterior cruciate ligament (ACL) reconstruction surgery, a staged repair response occurs where cells from outside the tendon graft participate in tunnel integration. The mechanisms that regulate this process, including the specific cellular origin, are poorly understood. Embryonic cells expressing growth and differentiation factor 5 (GDF5) give rise to several mesenchymal tissues in the joint and epiphyses. We hypothesized that cells from a GDF5 origin, even in the adult tissue, would give rise to cells that contribute to the stages of repair. ACLs were reconstructed in Gdf5-Cre;R26R-tdTomato lineage tracing mice to monitor the contribution of Gdf5-Cre;tdTom+ cells to the tunnel integration process. Anterior-posterior drawer tests demonstrated 58% restoration in anterior-posterior stability. Gdf5-Cre;tdTom+ cells within the epiphyseal bone marrow adjacent to tunnels expanded in response to the injury by 135-fold compared with intact controls to initiate tendon-to-bone attachments. They continued to mature the attachments yielding zonal insertion sites at 4 weeks with collagen fibers spanning across unmineralized and mineralized fibrocartilage and anchored to the adjacent bone. The zonal attachments possessed tidemarks with concentrated alkaline phosphatase activity similar to native entheses. This study established that mesenchymal cells from a GDF5 origin can contribute to zonal tendon-to-bone attachments within bone tunnels following ACL reconstruction.
Collapse
Affiliation(s)
- Yusuke Hagiwara
- Department of Orthopaedic Surgery, Inada Hospital, Nara Prefecture, Japan
- Department of Orthopaedic Surgery, Nara Medical University, Nara Prefecture, Japan
| | - Felix Dyrna
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Li L, Li M, Pang Y, Wang J, Wan Y, Zhu C, Yin Z. Abnormal thyroid hormone receptor signaling in osteoarthritic osteoblasts regulates microangiogenesis in subchondral bone. Life Sci 2019; 239:116975. [PMID: 31654748 DOI: 10.1016/j.lfs.2019.116975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
AIMS Previous study indicated that the increase of local bio-availability of 3'3'5-triiodothyronine (T3) influenced osteoarthritis (OA) initiation. We aimed to investigate the role of thyroid hormone receptors (THRs) signaling in OA osteoblasts. MATERIALS AND METHODS THRs expression in OA was detected by immunohistochemistry, immunofluorescence, RT-qPCR and western blotting. These effects on the expression of angiogenesis-related factors were examined after THRα or THRβ knockdown in OA osteoblasts. Fluorescence in situ hybridization was used to confirm the leading receptor for regulating angiogenesis-related factors. Co-culture model was utilized to observe the MMPs expression in chondrocytes after THRα knockdown in osteoblasts. The in vivo effects were also studied after intra-articular injection with THRα siRNA in OA model mice. Micro-CT and immunohistochemistry were employed to evaluate the changes of subchondral bone. KEY FINDINGS THRs expression and nuclear translocation were upregulated in human OA osteoblasts. Immunohistochemistry showed that angiogenic activities were increased in OA subchondral bone of human and mice. VEGF, HIF-1α and IGF-1, these THR downstream genes were downregulated after THRα knockdown in OA osteoblasts. Fluorescence in situ hybridization further indicated that THRα signaling mainly regulated VEGF expression. Intra-articular injection with THRα siRNA reduced angiogenic activities in OA model mice subchondral bone and ameliorated cartilage degradation. Micro-CT analysis displayed that the aberrant subchondral bone formation in OA was promoted. SIGNIFICANCE The microangiogenesis in subchondral bone may be partly attributed to abnormal THRα signaling in osteoblasts, and local inhibition of the THRα could be a potential target to treat OA.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopaedics, the first affiliated hospital of Anhui Medical Universtiy, #218 Jixi Road, Hefei, Anhui, China
| | - Meng Li
- Department of Orthopaedics, the first affiliated hospital of University of Science and Technology of China, #17 Lujiang Road, Hefei, Anhui, China
| | - Yiqun Pang
- Department of radiology, the first affiliated hospital of University of Science and Technology of China, #17 Lujiang Road, Hefei, Anhui, China
| | - Jun Wang
- Department of Orthopaedics, the first affiliated hospital of Anhui Medical Universtiy, #218 Jixi Road, Hefei, Anhui, China
| | - Yunpeng Wan
- Department of Orthopaedics, the first affiliated hospital of Anhui Medical Universtiy, #218 Jixi Road, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopaedics, the first affiliated hospital of University of Science and Technology of China, #17 Lujiang Road, Hefei, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, the first affiliated hospital of Anhui Medical Universtiy, #218 Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
14
|
The importance of performing knee surgery in rats. Osteoarthritis Cartilage 2019; 27:1107-1108. [PMID: 31034922 DOI: 10.1016/j.joca.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/02/2023]
|
15
|
|
16
|
Hsia AW, Emami AJ, Tarke FD, Cunningham HC, Tjandra PM, Wong A, Christiansen BA, Collette NM. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res 2018; 36:699-710. [PMID: 29058776 PMCID: PMC5877458 DOI: 10.1002/jor.23779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
Osteophytes are a typical radiographic finding during osteoarthritis (OA), but the mechanisms leading to their formation are not well known. Comparatively, fracture calluses have been studied extensively; therefore, drawing comparisons between osteophytes and fracture calluses may lead to a deeper understanding of osteophyte formation. In this study, we compared the time courses of osteophyte and fracture callus formation, and investigated mechanisms contributing to development of these structure. Additionally, we investigated the effect of mechanical unloading on the formation of both fracture calluses and osteophytes. Mice underwent either transverse femoral fracture or non-invasive anterior cruciate ligament rupture. Fracture callus and osteophyte size and ossification were evaluated after 3, 5, 7, 14, 21, or 28 days. Additional mice were subjected to hindlimb unloading after injury for 3, 7, or 14 days. Protease activity and gene expression profiles after injury were evaluated after 3 or 7 days of normal ambulation or hindlimb unloading using in vivo fluorescence reflectance imaging (FRI) and quantitative PCR. We found that fracture callus and osteophyte growth achieved similar developmental milestones, but fracture calluses formed and ossified at earlier time points. Hindlimb unloading ultimately led to a threefold decrease in chondro/osteophyte area, and a twofold decrease in fracture callus area. Unloading was also associated with decreased inflammation and protease activity in injured limbs detected with FRI, particularly following ACL rupture. qPCR analysis revealed disparate cellular responses in fractured femurs and injured joints, suggesting that fracture calluses and osteophytes may form via different inflammatory, anabolic, and catabolic pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:699-710, 2018.
Collapse
Affiliation(s)
- Allison W. Hsia
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Armaun J. Emami
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Franklin D. Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA
| | - Hailey C. Cunningham
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Priscilla M. Tjandra
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Alice Wong
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Blaine A. Christiansen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA
| | - Nicole M. Collette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| |
Collapse
|