1
|
Nayagam SM, Ramachandran K, Selvaraj G, Sunmathi R, Easwaran M, Palraj ND, Anand K S SV, Muthurajan R, Tangavel C, Rajasekaran S. Identification of extracellular matrix proteins in plasma as a potential biomarker for intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4062-4075. [PMID: 39299936 DOI: 10.1007/s00586-024-08481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Recently, there has been significant focus on extracellular matrix proteolysis due to its importance in the pathological progression of intervertebral disc degeneration (IVDD). The present study investigates the circulating levels of extracellular matrix proteins in the plasma of IVDD and determines their potential relevance as biomarkers in disc degeneration. METHODS Global proteomic analysis was performed in the plasma samples of 10 healthy volunteers (HV) and 10 diseased subjects (DS) after depletion of highly abundant proteins such as albumin and IgG. RESULTS We identified 144 and 135 matrix-associated proteins in plasma samples from healthy volunteers (HV) and patients with disc degeneration (DS), respectively. Among these, 49 of the matrix-associated proteins were identical to the proteins found in intervertebral disc (IVD) tissues retrieved from the in-house library. Applying stringent parameters, we selected 28 proteins, with 26 present in DS and 21 in HV. 19 proteins were found common between the groups, two of which-aggrecan (ACAN) and fibulin 1 (FBLN1) - showed statistically significant differences. Specifically, ACAN was up-regulated and FBLN1 was down-regulated in the DS-plasma. In particular, DS-plasma exhibited specific expression of collagen type 2a1 (COL2A1), native to the nucleus pulposus. CONCLUSION The distinct presence of collagen type 2a1 and the elevated expression of aggrecan in IVDD plasma may serve as the basis for the development of a potential biomarker for monitoring the progression of disc degeneration.
Collapse
Affiliation(s)
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ganesh Selvaraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - R Sunmathi
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Murugesh Easwaran
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Narmatha Devi Palraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Sri Vijay Anand K S
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| |
Collapse
|
2
|
Hassan MA, Hameed AS, Hameed EK. Serum fibulin-3 as a diagnostic and prognostic biomarker in patients with knee osteoarthritis. Ir J Med Sci 2024:10.1007/s11845-024-03780-9. [PMID: 39127857 DOI: 10.1007/s11845-024-03780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Osteoarthritis is a chronic degenerative disorder with rising prevalence. Early detection of structural damage is difficult. Consequently, there is a pressing demand for reliable biomarkers that enable an earlier diagnosis of osteoarthritis. The aim is to investigate the level of serum fibulin-3 in patients with primary knee osteoarthritis and its correlation with disease severity. SUBJECTS AND METHODS A case-control study was conducted at the Baqubah Teaching Hospital from November 2023 to January 2024. One hundred twenty persons participated in this study (eighty females with the diagnosis of knee osteoarthritis in its early and late stages, and forty age-matched, apparently healthy control. Serum fibulin-3, ESR, CRP, and calcium levels were measured for all participants. Ethical approval was obtained. SPSS was used for data analysis. RESULTS Patients with osteoarthritis had considerably higher serum levels of fibulin-3. In patients with late-stage knee osteoarthritis, this rise was greater than in earlier stages. Serum fibulin and ESR are positively correlated. Fibulin's area under the curve is 0.830 for diagnosis and 0.709 for differentiating between osteoarthritis's early and late stages. CONCLUSION Serum levels of fibulin-3 can act as diagnostic markers for OA and may be useful in determining the severity of knee osteoarthritis.
Collapse
Affiliation(s)
- Maria Abdullah Hassan
- Biochemistry Department, College of Science for Women ,University of Baghdad, Baghdad, Iraq
| | - Areej Sh Hameed
- Biochemistry Department, College of Science for Women ,University of Baghdad, Baghdad, Iraq
| | - Ekhlas Khalid Hameed
- Clinical Biochemistry Department, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
3
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
4
|
Sharma P, Beck D, Murtha LA, Figtree G, Boyle A, Gentile C. Fibulin-3 Deficiency Protects Against Myocardial Injury Following Ischaemia/ Reperfusion in in vitro Cardiac Spheroids. Front Cardiovasc Med 2022; 9:913156. [PMID: 35795376 PMCID: PMC9251181 DOI: 10.3389/fcvm.2022.913156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Myocardial infarction (MI, or heart attack) is a leading cause of death worldwide. Myocardial ischaemia reperfusion (I/R) injury typical of MI events is also associated with the development of cardiac fibrosis and heart failure in patients. Fibulin-3 is an extracellular matrix component that plays a role in regulating MI response in the heart. In this study, we generated and compared in vitro cardiac spheroids (CSs) from wild type (WT) and fibulin-3 knockout (Fib-3 KO) mice. These were then exposed to pathophysiological changes in oxygen (O2) concentrations to mimic an MI event. We finally measured changes in contractile function, cell death, and mRNA expression levels of cardiovascular disease genes between WT and Fib-3 KO CSs. Our results demonstrated that there are significant differences in growth kinetics and endothelial network formation between WT and Fib-3 KO CSs, however, they respond similarly to changes in O2 concentrations. Fib-3 deficiency resulted in an increase in viability of cells and improvement in contraction frequency and fractional shortening compared to WT I/R CSs. Gene expression analyses demonstrated that Fib-3 deficiency inhibits I/R injury and cardiac fibrosis and promotes angiogenesis in CSs. Altogether, our findings suggest that Fib-3 deficiency makes CSs resistant to I/R injury and associated cardiac fibrosis and helps to improve the vascular network in CSs.
Collapse
Affiliation(s)
- Poonam Sharma
- College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Dominik Beck
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Lucy A. Murtha
- College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Boyle
- College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Carmine Gentile
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Carmine Gentile
| |
Collapse
|
5
|
Choi SY, Rhim J, Han WJ, Park H, Noh JW, Han J, Ha CW. Associations between biomarkers and histological assessment in individual animals in a destabilization of the medial meniscus (DMM) model of osteoarthritis (OA). Acta Orthop Belg 2022; 87:713-721. [PMID: 35172438 DOI: 10.52628/87.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, the use of biomarkers for assessing individual severity of osteoarthritis (OA) is limited, and the correlation of histological scores with biomarkers for individual animals in the destabilization of the medial meniscus (DMM) model of OA has not been well investigated. Accordingly, this study investigated how well representative biomarkers in the DMM model reflected specific changes in individual animals. Rats were randomly divided into the OA group and the sham group. OA model was established by destabilization of the medial meniscus (DMM). After 2,4,6,8,10 and 12 weeks (n=14, each week), the concentrations of CTXII, COMP, C2C, and OC in serum were measured, and cartilage degeneration, osteophytes, and synovial membrane inflammation, typical of OA, were scored using Osteoarthritis Research Society International (OARSI) scoring system. Additionally, the correlation between each biomarker and the specific changes in osteoarthritis was analyzed for individual animals using the Generalized Estimating Equation (GEE). Statistical analysis showed a low correlation between CTXII and osteophyte score of the medial femur (coefficient = -0.0088, p= 0.0103), COMP and osteophyte score of the medial tibia (coefficient = -0.0911, p= 0.0003), and C2C and synovial membrane inflammation scores of the medial femoral (coefficient = 0.054, p= 0.0131). These results suggest that representative OA bio- markers in individual animals in the DMM model did not reflect histological scores well.
Collapse
|
6
|
Jeyaraman M, Muthu S, Gulati A, Jeyaraman N, G.S P, Jain R. Mesenchymal Stem Cell-Derived Exosomes: A Potential Therapeutic Avenue in Knee Osteoarthritis. Cartilage 2021; 13:1572S-1585S. [PMID: 33016114 PMCID: PMC8808857 DOI: 10.1177/1947603520962567] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Knee osteoarthritis is the leading cause of functional disability in adults. The goals of knee osteoarthritis management are directed toward symptomatic pain relief along with the attainment of the functional quality of life. The treatment strategy ranges from conservative to surgical management with reparative and restorative techniques. The emergence of cell-based therapies has paved the way for the usage of mesenchymal stem cells (MSCs) in cartilage disorders. Currently, global researchers are keen on their research on nanomedicine and targeted drug delivery. MSC-derived exosomes act as a directed therapy to halt the disease progression and to provide a pain-free range of movements with increased quality of cartilage on regeneration. International Society for Extracellular Vesicles and the European Network on Microvesicles and Exosomes in Health and Disease have formed guidelines to foster the use of the growing therapeutic potential of exosomal therapy in osteoarthritis. Although regenerative therapies with MSC are being seen to hold a future in the management of osteoarthritis, extracellular vesicle-based technology holds the key to unlock the potential toward knee preservation and regeneration. The intricate composition and uncertain functioning of exosomes are inquisitive facets warranting further exploration.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, School of
Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh,
India
- Madhan Jeyaraman, Department of Orthopedics,
School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar
Pradesh, 201306, India.
| | - Sathish Muthu
- Government Hospital, Velayuthampalayam,
Karur, Tamil Nadu, India
| | - Arun Gulati
- Kalpana Chawla Government Medical
College, Karnal, Haryana, India
| | | | - Prajwal G.S
- JJM Medical College, Davangere,
Karnataka, India
| | - Rashmi Jain
- School of Medical Sciences and Research,
Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Raoof R, Martin Gil C, Lafeber FPJG, de Visser H, Prado J, Versteeg S, Pascha MN, Heinemans ALP, Adolfs Y, Pasterkamp J, Wood JN, Mastbergen SC, Eijkelkamp N. Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. J Neurosci 2021; 41:8249-8261. [PMID: 34400519 PMCID: PMC8482866 DOI: 10.1523/jneurosci.1787-20.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.SIGNIFICANCE STATEMENT In OA patients pain poorly correlates with joint tissue changes indicating mechanisms other than only tissue damage that cause pain in OA. We identified that DRG containing the somata of sensory neurons innervating the damaged knee are infiltrated with macrophages that are shaped into an M1-like phenotype by sensory neurons. We show that these DRG macrophages actively maintain OA pain remotely and independent of joint damage. The phenotype of these macrophages is crucial for a pain-promoting role. Targeting the phenotype of DRG macrophages with either M2-like macrophages or a cytokine fusion protein that skews macrophages into an M2-like phenotype resolves OA pain. Our work reveals a mechanism that contributes to the maintenance of OA pain distant from the affected knee joint and suggests that dorsal root ganglia macrophages are a target to treat osteoarthritis chronic pain.
Collapse
Affiliation(s)
- Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huub de Visser
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mirte N Pascha
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Anne L P Heinemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen Pasterkamp
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - John N Wood
- Molecular Nociception Group, Department of Biology, University College London, London WC1E 6BT, England
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
8
|
Ma X, Zhang Z, Shen M, Ma Y, Li R, Jin X, Gao L, Wang Z. Changes of type II collagenase biomarkers on IL-1β-induced rat articular chondrocytes. Exp Ther Med 2021; 21:582. [PMID: 33850554 PMCID: PMC8027747 DOI: 10.3892/etm.2021.10014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is characterized by progressive degeneration of cartilage, formation of cartilage at the cartilage edge, and remodeling of the subchondral bone. Pro-inflammatory cytokines [e.g., interleukin (IL)-1β] that induce inflammation and promote chondrocyte damage induce OA. Currently, the diagnosis of OA is commonly based on imaging examinations (e.g., X-ray) and evaluations of clinical symptoms; however, biomarkers that can effectively diagnose OA are currently not available. By studying the mechanism underlying OA cartilage injury and changes in the concentrations of the biomarkers procollagen type II carboxy-terminal propeptide (PIICP), collagen type-II C-telopeptide fragments (CTX-II), and type II collagen cleavage neoepitope (C2C) during pathogenesis, the present study established a theoretical basis for the evaluation and early diagnosis of OA. In an experiment, 10 ng/ml IL-1β was used to the treat chondrocyte-induced OA models in vitro for 0, 12, 24 and 48 h. Western blotting was used to detect the expression levels of matrix metalloproteinase (MMP)-3, MMP-13, and inducible nitric oxide synthase (iNOS) protein at each time-point. The concentrations of CTX-II, C2C, and PIICP in the cell culture supernatant were detected by ELISA kit. A biochemical kit was used to detect changes of nitric oxide (NO) in the cell culture supernatant. In addition, chondrocytes were treated with 10 ng/ml IL-1β for 0, 30, 60 and 90 min and the translocation and phosphorylation of the NF-κB pathway were investigated by western blotting. Following IL-1β stimulation, the NF-κB pathway was activated to increase the expression levels of MMPs and iNOS synthesis downstream of the pathway, resulting in an increased degradation of type II collagen (Col II). To sum up, pro-inflammatory IL-1β induced an OA chondrocyte model. During the development of OA, the expression of MMPs and NO increased and Col II was degraded.
Collapse
Affiliation(s)
- Xiangying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhiheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meilun Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yuanqiang Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Rouqian Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhi Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, P.R. China
| |
Collapse
|
9
|
Nagy EE, Nagy-Finna C, Popoviciu H, Kovács B. Soluble Biomarkers of Osteoporosis and Osteoarthritis, from Pathway Mapping to Clinical Trials: An Update. Clin Interv Aging 2020; 15:501-518. [PMID: 32308378 PMCID: PMC7152733 DOI: 10.2147/cia.s242288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Serum biomarkers of osteoarticular diseases have been in the limelight of current clinical research trends. Laboratory validation of defined and candidate biomarkers for both osteoarthritis and osteoporosis is of key importance for future decisional algorithms in the diagnosis, monitoring, and prognosis of these diseases. The current guidelines recommend the use of collagen degradation remnants, eg, CTX-I and CTX-II, in the complementary diagnosis of both osteoporosis and osteoarthritis. Besides the collagen degradation markers, enzymes that regulate bone and articular metabolism are useful in the clinical evaluation of osteoarticular pathologies. Along these, several other recommended and new nominee molecules have been recently studied. Wnts and Wnt-related molecules have a cardinal role in the bone-joint homeostasis, making them a promising target not only for pharmaceutical modulation, but also to be considered as soluble biomarkers. Sclerostin and dickkopf, two inhibitor molecules of the Wnt/β-catenin signaling, might have a dual role in the assessment of the clinical manifestations of the osteoarticular unit. In osteoarthritis, besides fragments of collagen type II many pathway-related molecules have been studied and proposed for biomarker validation. The most serious limitation is that a significant proportion of studies lack statistical power due to the reduced number of cases enrolled. Serum biomarkers of bone and joint turnover markers represent an encouraging possibility for the diagnosis and prognosis of osteoarticular diseases, although further studies and laboratory validations should be carried out as to solely rely on them.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Csilla Nagy-Finna
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania
- Department M4, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania; Rheumatology Clinic, Clinical Emergency Hospital, Târgu Mureș, Romania
| | - Horațiu Popoviciu
- Department M4, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania; Rheumatology Clinic, Clinical Emergency Hospital, Târgu Mureș, Romania
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania
| |
Collapse
|
10
|
Ravalli S, Szychlinska MA, Lauretta G, Di Rosa M, Musumeci G. Investigating lubricin and known cartilage-based biomarkers of osteoarthritis. Expert Rev Mol Diagn 2020; 20:443-452. [PMID: 32085680 DOI: 10.1080/14737159.2020.1733978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Osteoarthritis (OA) is a degenerative disease which primarily affects hyaline cartilage, leading to pain, stiffness and loss of mobility of the entire articulation. Diagnosis is commonly based on symptoms and radiographs, but there is a growing interest in detecting novel biomarkers, in serum, urine and synovial fluid, which can be predictors of disease onset and progression.Areas covered: This review provides an overview of the main biomarkers currently used in OA clinical practice, with a focus on lubricin, a surface glycoprotein secreted in the synovial fluid that lubricates the cartilage and reduces the coefficient of friction within the joint. Key findings of the last years are presented throughout the article.Expert opinion: Analysis of biomarkers might suggest personalized protocols of treatment, guide the classification of OA phenotypes, contribute to precision medicine, avoid further unnecessary exams, facilitate drug discovery or refine treatment guidelines. For all these reasons, the investigation of novel cartilage-based biomarker of osteoarthritis needs to be promoted and improved.
Collapse
Affiliation(s)
- Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy.,Research Center on Motor Activities (CRAM), University of Catania, Catania, Via Santa Sofia, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Koca TT, Baykara M, Koçyiğit BF. Diz osteoartriti radyolojik evrelemesi ile tam kan sayım parametreleri ve türevleri ilişkisi. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.507406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|