1
|
Hawkes G, Beaumont RN, Li Z, Mandla R, Li X, Albert CM, Arnett DK, Ashley-Koch AE, Ashrani AA, Barnes KC, Boerwinkle E, Brody JA, Carson AP, Chami N, Chen YDI, Chung MK, Curran JE, Darbar D, Ellinor PT, Fornage M, Gordeuk VR, Guo X, He J, Hwu CM, Kalyani RR, Kaplan R, Kardia SLR, Kooperberg C, Loos RJF, Lubitz SA, Minster RL, Naseri T, Viali S, Mitchell BD, Murabito JM, Palmer ND, Psaty BM, Redline S, Shoemaker MB, Silverman EK, Telen MJ, Weiss ST, Yanek LR, Zhou H, Liu CT, North KE, Justice AE, Locke JM, Owens N, Murray A, Patel K, Frayling TM, Wright CF, Wood AR, Lin X, Manning A, Weedon MN. Whole-genome sequencing in 333,100 individuals reveals rare non-coding single variant and aggregate associations with height. Nat Commun 2024; 15:8549. [PMID: 39362880 PMCID: PMC11450065 DOI: 10.1038/s41467-024-52579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The role of rare non-coding variation in complex human phenotypes is still largely unknown. To elucidate the impact of rare variants in regulatory elements, we performed a whole-genome sequencing association analysis for height using 333,100 individuals from three datasets: UK Biobank (N = 200,003), TOPMed (N = 87,652) and All of Us (N = 45,445). We performed rare ( < 0.1% minor-allele-frequency) single-variant and aggregate testing of non-coding variants in regulatory regions based on proximal-regulatory, intergenic-regulatory and deep-intronic annotation. We observed 29 independent variants associated with height at P < 6 × 10 - 10 after conditioning on previously reported variants, with effect sizes ranging from -7cm to +4.7 cm. We also identified and replicated non-coding aggregate-based associations proximal to HMGA1 containing variants associated with a 5 cm taller height and of highly-conserved variants in MIR497HG on chromosome 17. We have developed an approach for identifying non-coding rare variants in regulatory regions with large effects from whole-genome sequencing data associated with complex traits.
Collapse
Affiliation(s)
- Gareth Hawkes
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Robin N Beaumont
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ravi Mandla
- Department of Medicine, Harvard Medical School, Broad Institute, Boston, Massachusetts, USA
| | - Xihao Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Donna K Arnett
- Provost Office, University of South Carolina, Columbia, SC, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Aneel A Ashrani
- Division of Hematology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Kathleen C Barnes
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Myrian Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victor R Gordeuk
- Department of Medicine, School of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, Brown University, Providence, Rhode Island, US
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Dept of Chronic Disease Epidemiology, Yale University, New Haven, Connecticut, US
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joanne M Murabito
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-, Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Justice
- Population Health Sciences, Geisinger, Danville, PA, USA
| | - Jonathan M Locke
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Nick Owens
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Anna Murray
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Kashyap Patel
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Andrew R Wood
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Alisa Manning
- Department of Medicine, Harvard Medical School, Broad Institute, Boston, Massachusetts, USA
| | - Michael N Weedon
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Jiang Y, Lu Y, Xu H, Hu Z, Du R, Zhou Y, Deng Q, Wang X, Liu Y, Wang Y. miR-206a-3p suppresses the proliferation and differentiation of chicken chondrocytes in tibial dyschondroplasia by targeting BMP6. Poult Sci 2024; 103:103534. [PMID: 38401226 PMCID: PMC10906518 DOI: 10.1016/j.psj.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024] Open
Abstract
The poultry skeletal system serves multiple functions, not only providing structural integrity but also maintaining the balance of essential minerals such as calcium and phosphorus. However, in recent years, the consideration of skeletal traits has been overlooked in the selective breeding of broilers, resulting in an inadequate adaptation of the skeletal system to cope with the rapid increase in body weight. Consequently, this leads to lameness and bone diseases such as tibial dyschondroplasia (TD), which significantly impact the production performance of broilers. Accumulating evidence has shown that microRNAs (miRNA) play a crucial role in the differentiation, formation, and disease of cartilage. However, the miRNA-mediated molecular mechanism underlying chicken TD formation is still poorly understood. The objective of this study was to investigate the biological function and regulatory mechanism of miRNA in chicken TD formation. Based on transcriptome sequencing of tibial cartilage in the healthy group and TD group, miR-206a-3p was found to be highly expressed in TD cartilage. The function of miR-206a-3p was explored through the transfection test of miR-206a-3p mimics and miR-206a-3p inhibitor. In this study, we utilized qRT-PCR, CCK-8, EdU, western blot, and flow cytometry to detect the proliferation, differentiation, and apoptosis of chondrocytes. The results revealed that miR-206a-3p suppressed the proliferation and differentiation of TD chondrocytes while promoting their programmed cell death. Furthermore, through biosynthesis and dual luciferase assays, it was determined that BMP6 was the direct target gene of miR-206a-3p. This finding was further supported by rescue experiments which confirmed the involvement of BMP6 in the regulatory pathway governed by miR-206a-3p. Our results suggest that miR-206a-3p can inhibits the proliferation and differentiation promote apoptosis through the target gene BMP-6 and suppressing the Smad2/3 signaling pathway in chicken TD chondrocytes.
Collapse
Affiliation(s)
- Yuru Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxiang Lu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ranran Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Deng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Ma G, Yang Y, Chen Y, Wei X, Ding J, Zhou RP, Hu W. Blockade of TRPM7 Alleviates Chondrocyte Apoptosis and Articular Cartilage Damage in the Adjuvant Arthritis Rat Model Through Regulation of the Indian Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:655551. [PMID: 33927631 PMCID: PMC8076952 DOI: 10.3389/fphar.2021.655551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage damage with subsequent impairment of joint function is a common feature of articular diseases, in particular, rheumatoid arthritis and osteoarthritis. While articular cartilage injury mediated by chondrocyte apoptosis is a known major pathological feature of arthritis, the specific mechanisms remain unclear at present. Transient receptor potential melastatin-like seven channel (TRPM7) is reported to play an important regulatory role in apoptosis. This study focused on the effects of TRPM7 on arthritic chondrocyte injury and its underlying mechanisms of action. Sodium nitroprusside (SNP)-induced rat primary chondrocyte apoptosis and rat adjuvant arthritis (AA) were used as in vitro and in vivo models, respectively. Blockage of TRPM7 with 2-APB or specific siRNA resulted in increased chondrocyte viability and reduced toxicity of SNP. Moreover, treatment with 2-APB enhanced the Bcl-2/Bax ratio and reduced cleaved PARP and IL-6, MMP-13 and ADAMTS-5 expression in SNP-treated chondrocytes. Activation of Indian Hedgehog with purmorphamine reversed the protective effects of 2-APB on SNP-induced chondrocyte apoptosis. Blockage of TRPM7 with 2-APB relieved the clinical signs of AA in the rat model and reduced the arthritis score and paw swelling. Similar to findings in SNP-treated chondrocytes, 2-APB treatment increased the Bcl-2/Bax ratio and suppressed cleaved PARP, IL-6, MMP-13, ADAMTS-5, TRPM7, and Indian hedgehog expression in articular cartilage of AA rats. Our collective findings suggest that blockade of TRPM7 could effectively reduce chondrocyte apoptosis and articular cartilage damage in rats with adjuvant arthritis through regulation of the Indian Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Ganggang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|