1
|
Kaneguchi A, Okahara R, Masuhara N, Doi Y, Yamaoka K, Ozawa J. The effects of short-term non-weightbearing and immobilization after anterior cruciate ligament reconstruction on articular cartilage: Long-term observation after reloading and remobilization. Tissue Cell 2025; 92:102628. [PMID: 39608270 DOI: 10.1016/j.tice.2024.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
Non-weightbearing or immobilization after anterior cruciate ligament (ACL) reconstruction accelerates cartilage degeneration. However, it is unclear whether these adverse effects are reversed by reloading or remobilization. Moreover, it is unknown whether the combination of non-weightbearing and immobilization after ACL reconstruction has synergistic effects on cartilage degeneration. We aimed to determine 1) the long-term effects of reloading or remobilization following short-term non-weightbearing or immobilization after ACL reconstruction on cartilage degeneration and 2) the combined effects of non-weightbearing and immobilization on cartilage degeneration. We divided ACL-reconstructed rats into four groups: no intervention, non-weightbearing, joint immobilization, and non-weightbearing plus immobilization. Non-weightbearing and immobilization were performed for 2 weeks, after which all rats were reared without intervention. Untreated rats were used as controls. At 2, 4, or 12 weeks after starting the experiment, cartilage degeneration in the anterior, middle, and posterior regions of the medial tibial plateau was histologically assessed. Two weeks of non-weightbearing or immobilization after ACL reconstruction facilitated cartilage degeneration in the middle and posterior regions compared to those with no intervention. Cartilage degeneration was not reversed by 10 weeks of reloading or remobilization. Compared with non-weightbearing alone, combination of non-weightbearing and immobilization improved cartilage degeneration in the middle region, but worsened it in the posterior region. Cartilage degeneration induced by 2 weeks of non-weightbearing or immobilization after ACL reconstruction was not reversed by reloading or remobilization. Thus, to reduce cartilage degeneration, non-weightbearing and immobilization should be avoided after ACL reconstruction, even for short-term.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Ryo Okahara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanami Masuhara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Yoshika Doi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Kaneguchi A, Masuhara N, Okahara R, Doi Y, Yamaoka K, Umehara T, Ozawa J. Long-term effects of non-weight bearing and immobilization after anterior cruciate ligament reconstruction on joint contracture formation in rats. Connect Tissue Res 2024; 65:187-201. [PMID: 38517297 DOI: 10.1080/03008207.2024.2331567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Non-weight bearing improves and immobilization worsens contracture induced by anterior cruciate ligament reconstruction (ACLR), but effect persistence after reloading and remobilization remains unclear, and the combined effects of these factors on ACLR-induced contracture are unknown. We aimed to determine 1) whether the effects of short-term (2-week) non-weight bearing or immobilization after ACLR on contracture would be sustained by reloading or remobilization during a 10-week observation period, and 2) how the combination of both interventions compared to the outcome of either alone. METHODS We divided 88 ACL-reconstructed male rats into four groups: non-intervention, non-weight bearing, joint immobilization, and both interventions. Interventions were performed for 2 weeks, followed by rearing without intervention. Twelve untreated rats were used as controls. At 2, 4, and 12 weeks post-surgery, we assessed range of motion (ROM) and histological changes. RESULTS ACLR resulted in persistent loss of ROM, accompanied by synovial shortening, capsule thickening, and osteophyte formation. Two weeks of non-weight bearing increased ROM and reduced osteophyte size, but the beneficial effects disappeared within 10 weeks after reloading. Two-week immobilization decreased ROM and facilitated synovial shortening. After remobilization, ROM partially recovered but remained below non-intervention levels at 12 weeks. When both interventions were combined, ROM was similar to immobilization alone. CONCLUSIONS The beneficial effects of 2-week non-weight bearing on contracture diminished within 10 weeks after reloading. The adverse effects of 2-week immobilization on contracture persisted after 10 weeks of remobilization. The effects of the combined use of both interventions on contracture were primarily determined by immobilization.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanami Masuhara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Okahara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yoshika Doi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
3
|
Kaneguchi A, Yamaoka K, Ozawa J. The effects of the amount of weight bearing on articular cartilage early after ACL reconstruction in rats. Connect Tissue Res 2023; 64:186-204. [PMID: 36334016 DOI: 10.1080/03008207.2022.2141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Osteoarthritis that develops after anterior cruciate ligament (ACL) reconstruction is a critical issue. We examined the effects of the amount of weight bearing early after ACL reconstruction on articular cartilage. MATERIALS AND METHODS Rats were divided into groups according to the treatment received: untreated control, ACL reconstruction (ACLR), ACL reconstruction plus hindlimb unloading (ACLR + HU), and ACL reconstruction plus morphine administration (ACLR + M). ACL reconstruction was performed on the right knee throughout the groups. To assess the amount of weight bearing, one-hindlimb standing time ratio (STR; operated side/contralateral side) during treadmill locomotion was evaluated during the experimental period. At day 7 or 14 post-surgery, cartilage degeneration of the medial tibial plateau was histologically assessed. RESULTS In the ACLR group, reduction in weight bearing characterized by significantly reduced STR was observed between day 1 and 7. Reduction in weight bearing was partially attenuated by morphine administration. Compared with the control group, the ACLR group exhibited an increased Mankin score that was accompanied by increased cyclooxygenase-2 expression in the anterior region. In the ACLR + HU group, Mankin scores were significantly higher in the middle and posterior regions, and cartilage thickness in these regions was significantly thinner than those in the ACLR group. In the ACLR + M group, although chondrocyte density in the anterior region was increased, all other parameters were not significantly different from those in the ACLR group. CONCLUSIONS Our results suggest that early weight bearing after ACL reconstruction is important to reduce cartilage degeneration.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| |
Collapse
|
4
|
Kaneguchi A, Ozawa J, Yamaoka K. Effects of Joint Immobilization and Treadmill Exercise on Articular Cartilage After ACL Reconstruction in Rats. Orthop J Sports Med 2022; 10:23259671221123543. [PMID: 36276424 PMCID: PMC9580101 DOI: 10.1177/23259671221123543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background: The development of osteoarthritis after anterior cruciate ligament (ACL) reconstruction (ACLR) is an important issue. However, the appropriate rehabilitation protocol to prevent cartilage degeneration due to postoperative osteoarthritis is unclear. Purpose: To examine the effects of joint immobilization and treadmill exercise on articular cartilage after ACLR. Study Design: Controlled laboratory study. Methods: A total of 55 rats received unilateral knee ACL transection and reconstruction surgery using tail tendon autografts. After surgery, rats were reared without intervention, with joint immobilization, or with daily treadmill exercise (12 m/minute, 60 minutes/day, 6 days/week). Treadmill exercise was initiated at 3 or 14 days postoperatively. After 2 weeks of immobilization, the fixation device was removed from some of the immobilized rats, and the knee was allowed to move freely for 2 weeks. Untreated, age-matched rats (n = 8) were used as controls. At 2 or 4 weeks after starting the experiment, cartilage degeneration in the medial tibial plateau was histologically assessed using a modified Mankin score, cartilage thickness, chondrocyte density, and immunohistochemistry for cyclooxygenase-2 (COX-2) in the anterior, middle, and posterior regions. Results: After ACLR, cartilage degeneration in the anterior region characterized by increased Mankin score, accompanied with increased COX-2 expression, was detected. Joint immobilization after ACLR facilitated cartilage degeneration, which is detected by histological changes such as reductions in cartilage thickness, chondrocyte density, and high Mankin scores. Enhanced COX-2 expression in all degenerated cartilage regions was also detected. It was found that 2 weeks of remobilization could not restore cartilage degeneration induced by 2 weeks of immobilization after ACLR. Treadmill exercise after ACLR did not affect most articular cartilage parameters, regardless of the timing of exercise. Conclusion: Our results indicated that (1) immobilization after ACLR accelerates cartilage degeneration, even when applied only for 2 weeks, and (2) mild exercise during early phases after ACLR does not facilitate cartilage degeneration. Clinical Relevance: To reduce cartilage degeneration, periods of joint immobilization after ACLR should be minimized. Mild exercise during the early phases after ACLR will not negatively affect articular cartilage.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.,Junya Ozawa, PT, PhD, Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan ()
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
5
|
Marrow adipose tissue accumulation and dysgenesis of the trabecular bone after anterior cruciate ligament transection and reconstruction in the rat proximal tibial epiphysis. Acta Histochem 2022; 124:151891. [PMID: 35367815 DOI: 10.1016/j.acthis.2022.151891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
Abstract
The accumulation of marrow adipose tissue (MAT) is frequently associated with bone loss. Although anterior cruciate ligament (ACL) injury induces bone loss, MAT accumulation after ACL injury has not been evaluated. In addition, no information about changes in MAT after ACL reconstruction is available. In this study, we aimed to examine (1) the effects of ACL transection on the amounts of trabecular bone and MAT present, and (2) whether ACL reconstruction inhibits the changes in the trabecular bone and MAT that are induced by ACL transection. ACL transection alone or with immediate reconstruction was performed on the right knees of rats. Untreated left knees were used as controls. Histomorphological changes in the trabecular bone and MAT in the proximal tibial epiphysis were examined prior to surgery and at one, four, and 12 weeks postsurgery. The trabecular bone area on the untreated side increased in a time-dependent manner. However, after ACL transection, the trabecular bone area did not increase during the experimental period, indicating dysgenesis of the bone (bone loss). Dysgenesis of the trabecular bone after ACL transection was attenuated by ACL reconstruction. MAT accumulation due to adipocyte hyperplasia and hypertrophy had been induced by ACL transection by four weeks postsurgery. This ACL transection-induced MAT accumulation was not prevented by ACL reconstruction. Based on these results, we conclude that (1) dysgenesis of the bone in the proximal tibia following ACL transection is accompanied by MAT accumulation, and (2) ACL reconstruction attenuates dysgenesis of the trabecular bone but cannot prevent MAT accumulation.
Collapse
|
6
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Effects of Each Phase of Anterior Cruciate Ligament Reconstruction Surgery on Joint Contracture in Rats. J INVEST SURG 2021; 35:984-995. [PMID: 34620030 DOI: 10.1080/08941939.2021.1985193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although anterior cruciate ligament reconstruction surgery is known to cause joint contracture, the mechanisms of this process are unknown. We aimed to assess the effects of transection of this ligament and each phase of reconstruction surgery on contracture formation. MATERIALS AND METHODS Rats were divided into groups according to treatment received: sham (arthrotomy), ligament transection, ligament transection plus bone drilling, and ligament reconstruction. Surgery was performed on the right knee. Untreated left knees in the sham group were used as controls. RESULTS At 7 and 28 d post-surgery, range of motion before myotomy, mainly representing myogenic contracture, was restricted in the sham and ligament transection groups, and more so in the bone drilling and reconstruction groups. Restricted range of motion after myotomy, representing arthrogenic contracture, was detected at both timepoints in the bone drilling and reconstruction groups, but not in the sham or ligament transection groups. At 3 d post-surgery, although a large blood clot was observed in all three treatment groups, only the bone drilling and reconstruction groups showed significant joint swelling. At 7 d post-surgery, inflammatory-cell infiltration into the joint capsule was most apparent in the bone drilling and reconstruction groups, and joint capsule fibrosis was also most apparent in these groups at 7 and 28 d post-surgery. CONCLUSIONS Our results suggest that (1) myogenic contracture after anterior cruciate ligament reconstruction is caused by arthrotomy and aggravated by bone drilling, and (2) arthrogenic contracture is mostly due to bone drilling, which triggers an inflammation-fibrosis cascade.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Kengo Minamimoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|