1
|
Chu H, Zhang S, Zhang Z, Yue H, Liu H, Li B, Yin F. Comparison studies identify mesenchymal stromal cells with potent regenerative activity in osteoarthritis treatment. NPJ Regen Med 2024; 9:14. [PMID: 38561335 PMCID: PMC10984924 DOI: 10.1038/s41536-024-00358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Osteoarthritis affects 15% of people over 65 years of age. It is characterized by articular cartilage degradation and inflammation, leading to joint pain and disability. Osteoarthritis is incurable and the patients may eventually need joint replacement. An emerging treatment is mesenchymal stromal cells (MSCs), with over two hundred clinical trials being registered. However, the outcomes of these trials have fallen short of the expectation, due to heterogeneity of MSCs and uncertain mechanisms of action. It is generally believed that MSCs exert their function mainly by secreting immunomodulatory and trophic factors. Here we used knee osteoarthritis mouse model to assess the therapeutic effects of MSCs isolated from the white adipose or dermal adipose tissue of Prrx1-Cre; R26tdTomato mice and Dermo1-Cre; R26tdTomato mice. We found that the Prrx1-lineage MSCs from the white adipose tissues showed the greatest in vitro differentiation potentials among the four MSC groups and single cell profiling showed that the Prrx1-lineage MSCs contained more stem cells than the Dermo1 counterpart. Only the Prrx1-lineage cells isolated from white adipose tissues showed long-term therapeutic effectiveness on early-stage osteoarthritis models. Mechanistically, Prrx1-lineage MSCs differentiated into Col2+ chondrocytes and replaced the damage cartilage, activated Col1 expressing in resident chondrocytes, and inhibited synovial inflammation. Transcriptome analysis showed that the articular chondrocytes derived from injected MSCs expressed immunomodulatory cytokines, trophic factors, and chondrocyte-specific genes. Our study identified a MSC population genetically marked by Prrx1 that has great multipotentiality and can differentiate into chondrocytes to replace the damaged cartilage.
Collapse
Affiliation(s)
- Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoyang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Feng Yin
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Department of Joint and Sports Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Veronesi F, Andriolo L, Salerno M, Boffa A, Giavaresi G, Filardo G. Adipose Tissue-Derived Minimally Manipulated Products versus Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis: A Systematic Review of Clinical Evidence and Meta-Analysis. J Clin Med 2023; 13:67. [PMID: 38202074 PMCID: PMC10780289 DOI: 10.3390/jcm13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The use of minimally manipulated adipose tissue (MM-AT) products is gaining increasing interest for the treatment of knee osteoarthritis (OA). MM-AT represents an easy way to exploit adipose tissue properties, although clinical evidence is still limited, as well as their benefits with respect to more documented orthobiologics like platelet-rich plasma (PRP). A systematic review and meta-analysis were performed to evaluate the safety and efficacy of MM-AT products for knee OA management. The risk of bias of the included studies was evaluated using the Dawns and Black checklist for all the included studies and RoB-2.0 for randomized controlled trials (RCTs). Thirty-three clinical studies were included in the qualitative analysis: 13 prospective case series, 10 retrospective case series, 7 RCTs, 2 retrospective comparative studies, and 1 prospective comparative study. An overall clinical improvement and few minor adverse events were observed. Five RCTs comparing MM-AT and PRP injections were meta-analyzed, showing comparable results. The analysis also highlighted the limits of the literature, with only a few high-level trials and an overall low quality. Even though the current literature is still limited, the available evidence suggests the safety and overall positive results of the intra-articular injections of MM-AT products for knee OA treatment.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.V.); (G.G.)
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Manuela Salerno
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.S.)
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.V.); (G.G.)
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.S.)
| |
Collapse
|
3
|
Russo A, Cortina G, Condello V, Collarile M, Orlandi R, Gianoli R, Giuliani E, Madonna V. Autologous micro-fragmented adipose tissue injection provides significant and prolonged clinical improvement in patients with knee osteoarthritis: a case-series study. J Exp Orthop 2023; 10:116. [PMID: 37968496 PMCID: PMC10651566 DOI: 10.1186/s40634-023-00668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
PURPOSE Among the conservative strategies to manage patients with symptomatic knee osteoarthritis (OA), an innovative approach exploiting the regenerative capability of adipose tissue and its resident MSCs (Mesenchymal Stem Cells or Medicinal Signalling Cells) has been proposed with encouraging results. This study aims to demonstrate the benefits of autologous micro-fragmented adipose tissue (MAT) injection in the conservative treatment of knee osteoarthritis and whether any variables may affect the outcome. This is a case series single-centre study in which patients underwent intraarticular MAT injection without any associated procedures. METHODS Based on inclusion and exclusion criteria, 49 patients (67 Knees) were included and retrospectively analysed with a mean follow-up of 34.04 ± 13.62 months (minimum 11 - maximum 59). Patients were assessed through the WOMAC and KOOS questionnaires at baseline (pre-treatment) and 1-, 3-, 6-, 12-, 24- and 36-month follow-up. A minimal clinically important difference (MCID) of at least 7.5 points for the WOMAC pain scale and 7.2 for the WOMAC function scale compared to the baseline value was used. RESULTS WOMAC and KOOS scores improved after treatment compared to baseline at all follow-ups with p < 0.001. Male gender and Kellgren-Lawrence (KL) grade 2 were associated with smaller improvement in WOMAC and KOOS scores (with respect to females and to KL grade 1, respectively) up to 24 months. The percentage of patients who reach the MCID for WOMAC pain is generally lower than that of patients who reach the MCID for WOMAC function (around 80% at all time points), but it increases significantly over time. Moreover, the baseline score of the WOMAC pain and function influence the outcome. Patients with worse symptoms are more likely to reach the MCID. CONCLUSIONS Intra-articular knee injection of MAT for the treatment of knee osteoarthritis (KOA), recalcitrant to traditional conservative treatments, proved to be effective in a high percentage of cases. The positive association between a worse pre-operative score and a better clinical response to the treatment would support the idea that intra-articular administration of MAT could be considered in patients with very symptomatic KOA in which joint-replacement surgeries are not indicated (or accepted). LEVEL OF EVIDENCE IV, case series.
Collapse
Affiliation(s)
- Arcangelo Russo
- Department of Orthopedics, Joint Prosthetic, Arthroscopic Surgery and Sports Traumatology, Humanitas Castelli, Via Mazzini 11, 24128, Bergamo, Italy.
| | - Gabriele Cortina
- Department of Orthopaedic and Trauma Surgery, University Campus Bio-Medico of Rome, 00128, Rome, Italy
| | - Vincenzo Condello
- Department of Orthopedics, Joint Prosthetic, Arthroscopic Surgery and Sports Traumatology, Humanitas Castelli, Via Mazzini 11, 24128, Bergamo, Italy
| | - Marco Collarile
- Department of Orthopedics, Joint Prosthetic, Arthroscopic Surgery and Sports Traumatology, Humanitas Castelli, Via Mazzini 11, 24128, Bergamo, Italy
| | - Roberto Orlandi
- Department of Orthopedics, Joint Prosthetic, Arthroscopic Surgery and Sports Traumatology, Humanitas Castelli, Via Mazzini 11, 24128, Bergamo, Italy
| | - Riccardo Gianoli
- Engineering Department, University of Bergamo, Viale Marconi, 5, 24044, Dalmine, BG, Italy
| | - Emanuele Giuliani
- Engineering Department, University of Bergamo, Viale Marconi, 5, 24044, Dalmine, BG, Italy
| | - Vincenzo Madonna
- Department of Orthopedics, Joint Prosthetic, Arthroscopic Surgery and Sports Traumatology, Humanitas Castelli, Via Mazzini 11, 24128, Bergamo, Italy
| |
Collapse
|
4
|
Perdisa F, Bordini B, Salerno M, Traina F, Zaffagnini S, Filardo G. Total Knee Arthroplasty (TKA): When Do the Risks of TKA Overcome the Benefits? Double Risk of Failure in Patients up to 65 Years Old. Cartilage 2023; 14:305-311. [PMID: 37073516 PMCID: PMC10601565 DOI: 10.1177/19476035231164733] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 04/20/2023] Open
Abstract
OBJECTIVE The aim of this study was to document the survival rate in the middle-aged patient group up to 65 years old and to compare it with other age groups of patients undergoing total knee arthroplasty (TKA) for knee osteoarthritis (OA). DESIGN The Register of Orthopaedic Prosthetic Implants (RIPO) regional registry was used to analyze the results of patients <80 years old affected by primary OA and treated with TKA from 2000 to 2019. The database was investigated according to the age group: younger than 50 years, 50-65 years, or 66-79 years, with the aim to estimate revision surgeries and implant survivorship. RESULTS A total of 45,488 TKAs for primary OA were included in the analysis (M: 11,388; F: 27,846). The percentage of patients <65 years old increased from 13.5% to 24.8% between 2000 and 2019 (P < 0.0001). The survival analysis showed an overall influence of age on the implant revision rate (P < 0.0001), with an estimated survival rate of 78.7%, 89.4%, and 94.8% at 15 years in the 3 groups, respectively. Compared with the older-aged group, the relative risk of failure was 3.1 (95% confidence interval [CI] = 2.2-4.3; P < 0.001) higher in patients <50 years old and 1.8 (95% CI = 1.6-2.0; P < 0.001) higher in patients 50-65 years old. CONCLUSIONS TKA use in the middle-aged patient population up to 65 years old increased significantly over time. These patients present a double risk of failure with respect to older patients. This is particularly important considering the increasing life expectancy and the emergence of new joint preserving strategies, which could postpone the need for TKA to an older age.
Collapse
Affiliation(s)
| | - Barbara Bordini
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Traina
- Orthopaedic-Traumatology and Prosthetic Surgery and Revisons of Hip and Knee Implants, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
5
|
Boffa A, Perucca Orfei C, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, de Girolamo L, Filardo G. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 2: bone marrow-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-023-07320-3. [PMID: 36823238 DOI: 10.1007/s00167-023-07320-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Aim of this systematic review was to determine if bone marrow-derived cell-based injectable therapies induce disease-modifying effects in joints affected by osteoarthritis (OA) in animal models. METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical animal studies comparing injectable bone marrow-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Fifty-three studies were included (1819 animals) with an increasing publication trend over time. Expanded cells were used in 48 studies, point-of-care products in 3 studies, and both approaches were investigated in 2 studies. Among the 47 studies presenting results on the disease-modifying effects, 40 studies (85%) reported better results with bone marrow-derived products compared to OA controls, with positive findings evident in 14 out of 20 studies (70%) in macroscopic assessment, in 30 out of 41 studies (73%) in histological assessment, and in 10 out of 13 studies (77%) in immunohistochemical evaluations. Clinical evaluations showed positive results in 7 studies out of 9 (78%), positive imaging results in 11 studies out of 17 (65%), and positive biomarker results in 5 studies out of 10 (50%). While 36 out of 46 studies (78%) reported positive results at the cartilage level, only 3 out of 10 studies (30%) could detect positive changes at the synovial level. The risk of bias was low in 42% of items, unclear in 50%, and high in 8%. CONCLUSION This systematic review of preclinical studies demonstrated that intra-articular injections of bone marrow-derived products can induce disease-modifying effects in the treatment of OA, slowing down the progression of cartilage damage with benefits at macroscopic, histological, and immunohistochemical levels. Positive results have been also observed in terms of clinical and imaging findings, as well as in the modulation of inflammatory and cartilage biomarkers, while poor effects have been described on the synovial membrane. These findings are important to understand the potential of bone marrow-derived products and to guide further research to optimise their use in the clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | | | - Lior Laver
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (Israel Institute of Technology), Haifa, Israel
| | - Jérémy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
- INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France
- SAS Remedex, Marseille, France
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
6
|
Delbaldo C, Tschon M, Martini L, Fini M, Codispoti G. Benefits of Applying Nanotechnologies to Hydrogels in Efficacy Tests in Osteoarthritis Models-A Systematic Review of Preclinical Studies. Int J Mol Sci 2022; 23:ijms23158236. [PMID: 35897805 PMCID: PMC9368605 DOI: 10.3390/ijms23158236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022] Open
Abstract
Osteoarthritis (OA) is a severe musculoskeletal disease with an increasing incidence in the worldwide population. Recent research has focused on the development of innovative strategies to prevent articular cartilage damage and slow down OA progression, and nanotechnologies applied to hydrogels have gained particular interest. The aim of this systematic review is to investigate the state of the art on preclinical in vitro and in vivo efficacy studies applying nanotechnologies to hydrogels in OA models to elucidate the benefits of their applications. Three databases were consulted for eligible papers. The inclusion criteria were in vitro and in vivo preclinical studies, using OA cells or OA animal models, and testing hydrogels and nanoparticles (NPs) over the last ten years. Data extraction and quality assessment were performed. Eleven papers were included. In vitro studies evidenced that NP-gels do not impact on cell viability and do not cause inflammation in OA cell phenotypes. In vivo research on rodents showed that these treatments could increase drug retention in joints, reducing inflammation and preventing articular cartilage damage. Nanotechnologies in preclinical efficacy tests are still new and require extensive studies and technical hits to determine the efficacy, safety, fate, and localization of NPs for translation into an effective therapy for OA patients.
Collapse
|
7
|
Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13:14. [PMID: 35012666 PMCID: PMC8751117 DOI: 10.1186/s13287-021-02689-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-Yi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Rehabilitation Medicine Centre, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Stem Cells in Autologous Microfragmented Adipose Tissue: Current Perspectives in Osteoarthritis Disease. Int J Mol Sci 2021; 22:ijms221910197. [PMID: 34638538 PMCID: PMC8508703 DOI: 10.3390/ijms221910197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of weight-bearing joints with detrimental effects on cartilage volume as well as cartilage damage, generating inflammation in the joint structure. The etiology of OA is multifactorial. Currently, therapies are mainly addressing the physical and occupational aspects of osteoarthritis using pharmacologic pain treatment and/or surgery to manage the symptomatology of the disease with no specific regard to disease progression or prevention. Herein, we highlight alternative therapeutics for OA specifically considering innovative and encouraging translational methods with the use of adipose mesenchymal stem cells.
Collapse
|